Skip to main content
Log in

Multi-Objective Cognitive Model: a Supervised Approach for Multi-subject fMRI Analysis

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

In order to decode human brain, Multivariate Pattern (MVP) classification generates cognitive models by using functional Magnetic Resonance Imaging (fMRI) datasets. As a standard pipeline in the MVP analysis, brain patterns in multi-subject fMRI dataset must be mapped to a shared space and then a classification model is generated by employing the mapped patterns. However, the MVP models may not provide stable performance on a new fMRI dataset because the standard pipeline uses disjoint steps for generating these models. Indeed, each step in the pipeline includes an objective function with independent optimization approach, where the best solution of each step may not be optimum for the next steps. For tackling the mentioned issue, this paper introduces Multi-Objective Cognitive Model (MOCM) that utilizes an integrated objective function for MVP analysis rather than just using those disjoint steps. For solving the integrated problem, we proposed a customized multi-objective optimization approach, where all possible solutions are firstly generated, and then our method ranks and selects the robust solutions as the final results. Empirical studies confirm that the proposed method can generate superior performance in comparison with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Available at http://openfmri.org

  2. Available at https://fsl.fmrib.ox.ac.uk

  3. DEL, CPU = Intel Xeon E5-2630 v3 (8×2.4 GHz), RAM = 64GB, OS = Ubuntu 16.04.2 LTS.

References

  • Bennett, C.M., Baird, A., Miller, M.B., Wolfrod, G.L. (2009). Neural correlates of interspieces perspective taking in the post-mortem atlantic salmon: an argument for multiple comparisons correction. Human Brain Mapping, 1, 1995.

    Google Scholar 

  • Bradley, P.S., & Mangasarian, O.L. (1998). Feature selection via concave minimization and support vector machines. In 15th international conference on machine learning (ICML) (Vol. 98, pp. 82–90). Association for computing machinery (ACM). Madison, Wisconsin, USA.

  • Cai, M.B., Schuck, N.W., Pillow, J.W., Niv, Y. (2016). A bayesian method for reducing bias in neural representational similarity analysis. In Advances in neural information processing systems (NIPS) (pp. 4951–4959).

  • Carroll, M.K., Cecchi, G.A., Rish, I., Garg, R., Rao, A.R. (2009). Prediction and interpretation of distributed neural activity with sparse models. NeuroImage, 44(1), 112–122.

    Article  PubMed  Google Scholar 

  • Chen, P.H., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., Ramadge, P.J. (2015). A reduced-dimension fmri shared response model. In 28th advances in neural information processing systems (NIPS-15) (pp. 460–468). Advances in neural information processing systems (NIPS). Montréal, Canada.

  • Chen, P.H., Guntupalli, J.S., Haxby, J.V., Ramadge, P.J. (2014). Joint svd-hyperalignment for multi-subject fmri data alignment. In 24th international workshop on machine learning for signal processing (MLSP) (pp. 1–6). Reims, France: IEEE.

  • Chen, P.H., Zhu, X., Zhang, H., Turek, J.S., Chen, J., Willke, T.L., Hasson, U., Ramadge, P.J. (2016). A convolutional autoencoder for multi-subject fmri data aggregation. In 29th workshop of representation learning in artificial and biological neural networks. Advances in neural information processing systems (NIPS). Barcelona, Spain.

  • Conroy, B.R., Walz, J.M., Sajda, P. (2013). Fast bootstrapping and permutation testing for assessing reproducibility and interpretability of multivariate fmri decoding models. PLoS ONE, 8(11), 1–11.

    Article  CAS  Google Scholar 

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Cox, D.D., & Savoy, R.L. (2003). Functional magnetic resonance imaging (fmri) “brain reading”: detecting and classifying distributed patterns of fmri activity in human visual cortex. NeuroImage, 19(2), 261–270.

    Article  PubMed  Google Scholar 

  • Cox, R.W. (1996). Afni: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical research, 29(3), 162–173.

    Article  CAS  PubMed  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Duncan, K.J., Pattamadilok, C., Knierim, I., Devlin, J.T. (2009). Consistency and variability in functional localisers. NeuroImage, 46(4), 1018–1026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eklund, A., Nichols, T.E., Knutsson, H. (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences (PNAS), 113(28), 7900–7905.

    Article  CAS  Google Scholar 

  • Grosenick, L., Klingenberg, B., Katovich, K., Knutson, B., Taylor, J.E. (2013). Interpretable whole-brain prediction analysis with graphnet. NeuroImage, 72, 304–321.

    Article  PubMed  Google Scholar 

  • Güçlü, U., & van Gerven, M.A. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10,005–10,014.

    Article  CAS  Google Scholar 

  • Guntupalli, J.S., Hanke, M., Halchenko, Y.O., Connolly, A.C., Ramadge, P.J., Haxby, J.V. (2016). A model of representational spaces in human cortex. Cerebral Cortex, 26(6), 2919–2934.

    Article  PubMed  Google Scholar 

  • Hanke, M., Baumgartner, F.J., Ibe, P., Kaule, F.R., Pollmann, S., Speck, O., Zinke, W., Stadler, J. (2014). A high-resolution 7-tesla fmri dataset from complex natural stimulation with an audio movie. Scientific Data, 1, 1–8.

    Article  Google Scholar 

  • Haxby, J.V., Connolly, A.C., Guntupalli, J.S. (2014). Decoding neural representational spaces using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435–456.

    Article  CAS  PubMed  Google Scholar 

  • Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M., Ramadge, P.J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72(2), 404–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M. (2012). Fsl. Neuroimage, 62(2), 782–790.

    Article  Google Scholar 

  • Kao, M.H. (2009). Multi-objective optimal experimental designs for er-fmri using matlab. Journal of Statistical Software, 30 (11), 1–13.

    Article  Google Scholar 

  • Kao, M.H., Mandal, A., Stufken, J. (2012). Constrained multiobjective designs for functional magnetic resonance imaging experiments via a modified non-dominated sorting genetic algorithm. Journal of the Royal Statistical Society. Series C: Applied Statistics, 61(4), 515–534.

    Article  Google Scholar 

  • Li, B., Tang, K., Li, J., Yao, X. (2016). Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Transactions on Evolutionary Computation, 20(6), 924– 938.

    Article  Google Scholar 

  • Li, M., Yang, S., Liu, X. (2014). Shift-based density estimation for pareto-based algorithms in many-objective optimization. IEEE Transactions on Evolutionary Computation, 18(3), 348–365.

    Article  Google Scholar 

  • Lorbert, A., & Ramadge, P.J. (2012). Kernel hyperalignment. In 25th advances in neural information processing systems (NIPS-12). Advances in neural Information Processing Systems (NIPS) (pp. 1790–1798). Harveys, Lake Tahoe.

  • Ma, X., Chou, C.A., Sayama, H., Chaovalitwongse, WA. (2016). Brain response pattern identification of fMRI data using a particle swarm optimization-based approach. Brain Informatics, 3(3), 181–192.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.M., Malave, V.L., Mason, R.A., Just, M.A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 1191–1195.

    Article  CAS  Google Scholar 

  • Mohr, H., Wolfensteller, U., Frimmel, S., Ruge, H. (2015). Sparse regularization techniques provide novel insights into outcome integration processes. NeuroImage, 104, 163–176.

    Article  PubMed  Google Scholar 

  • Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fmri data. Trends in Cognitive Sciences, 10(9), 424–430.

    Article  PubMed  Google Scholar 

  • Osher, D.E., Saxe, R.R., Koldewyn, K., Gabrieli, J.D., Kanwisher, N., Saygin, Z.M. (2015). Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cerebral Cortex, 26(4), 1668–1683.

    Article  PubMed  Google Scholar 

  • Pauli, R., Bowring, A., Reynolds, R., Chen, G., Nichols, T.E., Maumet, C. (2016). Exploring fmri results space: 31 variants of an fmri analysis in afni, fsl, and spm. Frontiers in Neuroinformatics, 10, 1–6.

    Article  Google Scholar 

  • Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E. (2011). Statistical parametric mapping: the analysis of functional brain images. Academic Press. ISBN: 978-0-12-372560-8.

  • Rademacher, J., Caviness, V.S., Steinmetz, H., Galaburda, A. (1993). Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cerebral Cortex, 3(4), 313–329.

    Article  CAS  PubMed  Google Scholar 

  • Tom, S.M., Fox, C.R., Trepel, C., Poldrack, R.A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315(5811), 515–518.

    Article  CAS  Google Scholar 

  • Wakeman, D.G., & Henson, R.N. (2015). A multi-subject, multi-modal human neuroimaging dataset. Scientific Data, 2, 1–10.

    Article  Google Scholar 

  • Walz, J.M., Goldman, R.I., Carapezza, M., Muraskin, J., Brown, T.R., Sajda, P. (2013). Simultaneous eeg-fmri reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem. Journal of Neuroscience, 33(49), 19,212–19,222.

    Article  CAS  Google Scholar 

  • Watson, J.D., Myers, R., Frackowiak, R.S.J., Hajnal, J.V., Woods, R.P., Mazziotta, J.C., Shipp, S., Zeki, S. (1993). Area v5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex, 3(2), 79–94.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Lorbert, A., Ramadge, P.J., Guntupalli, J.S., Haxby, J.V. (2012). Regularized hyperalignment of multi-set fmri data. In Statistical signal processing workshop (SSP) (pp. 229–232). Ann Arbor, USA: IEEE.

  • Yousefnezhad, M., & Zhang, D. (2016). Decoding visual stimuli in human brain by using anatomical pattern analysis on fmri images. In 8th international conference on brain inspired cognitive systems (BICS’16) (pp. 47–57). Beijing: Springer.

  • Yousefnezhad, M., & Zhang, D. (2017). Local discriminant hyperalignment for multi-subject fmri data alignment. In 34th AAAI conference on artificial intelligence (AAAI-17). Association for the advancement of artificial intelligence (AAAI). San Francisco, California, USA.

  • Yousefnezhad, M., & Zhang, D. (2017). Multi-region neural representation: a novel model for decoding visual stimuli in human brains. In 17th SIAM international conference on data mininig (SDM-17). Society for industrial and applied mathematics (SIAM). Houston, Texas, USA.

  • Zitzler, E., & Künzli, S. (2004). Indicator-based selection in multiobjective search. In International conference on parallel problem solving from nature (pp. 832–842). Birmingham: Springer.

  • Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61422204 and 61473149), and NUAA Fundamental Research Funds (NE2013105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Yousefnezhad or Daoqiang Zhang.

Ethics declarations

Conflict of interests

Muhammad Yousefnezhad and Daoqiang Zhang declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefnezhad, M., Zhang, D. Multi-Objective Cognitive Model: a Supervised Approach for Multi-subject fMRI Analysis. Neuroinform 17, 197–210 (2019). https://doi.org/10.1007/s12021-018-9394-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9394-9

Keywords

Navigation