Skip to main content

Advertisement

Log in

Circulating microRNA-144-3p and miR-762 are novel biomarkers of Graves’ disease

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Recently, it has been confirmed that circulating miRNAs play an important role in disease pathogenesis and can be biomarkers of many autoimmune diseases. However, the knowledge about circulating miRNAs in Graves’ disease (GD) is very limited. In this study, we aimed to identify circulating miRNAs as potential biomarkers of GD.

Methods

We recruited 68 participants who met the criteria for GD and healthy controls. The expression profile of miRNAs in plasma was detected using microarrays. We found five interesting miRNAs were differentially expressed between GD and control group and futher validated their relative expression by quantitative real-time PCR. According to their putative target genes predicted by the TargetScan database, we also performed Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses to predict their potential functions and related pathways.

Results

Microarray data showed that five miRNAs were differentially expressed in GD and control plasma samples. Among them, miR-16-1-3p, miR-122-5p, miR-221-3p, and miR-762 were upregulated in GD (P < 0.001). In validation stage, we found miR-144-3p was significantly decreased and miR-762 was markedly upregulated in GD plasma (P < 0.01). In addition, miR-762 expression was positively associated with levels of FT3 (r = 0.307, P = 0.038) as well as TRAb (r = 0.302, P = 0.042). The receiver-operating characteristic (ROC) curve analysis showed that both miR-144-3p and miR-762 displayed good sensitivity and specificity in discriminating the GD patients from the rest of subjects with the area under the ROC curve (AUC) of 0.761 (P = 0.001, 95% CI = 0.648–0.875) and 0.737 (P = 0.001, 95% CI = 0.618–0.857), respectively. Combination of miR-144-3p and miR-762 could better discriminate GD patients from healthy controls with AUC of 0.861 (P < 0.001, 95% CI = 0.775–0.947).

Conclusions

We first demonstrated that aberrant levels of plasmic miR-144-3p and miR-762 were associated with GD, which may be biomarkers for GD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Shehjar, D. Afroze, R.A. Misgar, S.A. Malik, B.A. Laway, Association of FoxP3 promoter polymorphisms with the risk of Graves’ disease in ethnic Kashmiri population. Gene (2018). https://doi.org/10.1016/j.gene.2018.06.023

  2. L. Zhang, G. Masetti, G. Colucci, M. Salvi, D. Covelli, A. Eckstein, U. Kaiser, M.S. Draman, I. Muller, M. Ludgate, L. Lucini, F. Biscarini, Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Sci. Rep. 8, 8386 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Kim, F. Yao, Z. Xiao, Y. Sun, L. Ma, MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastas-. Rev. 37, 5–15 (2018)

    Article  CAS  Google Scholar 

  4. V. Ambros, The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  CAS  Google Scholar 

  5. J. Massart, M. Katayama, A. Krook: microManaging glucose and lipid metabolism in skeletal muscle: Role of microRNAs. Biochim. Biophys. Acta 1861, 2130–2138 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. D.W. Trobaugh, W.B. Klimstra, MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med. 23, 80–93 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. C. Xiao, K. Rajewsky, MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. K. Zen, C.Y. Zhang, Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med. Res. Rev. 32, 326–348 (2012)

    Article  CAS  PubMed  Google Scholar 

  9. J.A. Weber, D.H. Baxter, S. Zhang, D.Y. Huang, K.H. Huang, M.J. Lee, D.J. Galas, K. Wang, The microRNA spectrum in 12 body fluids. Clin. Chem. 56, 1733–1741 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Zubakov, A.W. Boersma, Y. Choi, P.F. van Kuijk, E.A. Wiemer, M. Kayser, MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int. J. Leg. Med. 124, 217–226 (2010)

    Article  Google Scholar 

  11. L. Zeng, J. Cui, H. Wu, Q. Lu, The emerging role of circulating microRNAs as biomarkers in autoimmune diseases. Autoimmunity 47, 419–429 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. S. Mi, J. Zhang, W. Zhang, R.S. Huang, Circulating microRNAs as biomarkers for inflammatory diseases. Microrna 2, 63–71 (2013)

    Article  PubMed  Google Scholar 

  13. C. Castro-Villegas, C. Perez-Sanchez, A. Escudero, I. Filipescu, M. Verdu, P. Ruiz-Limon, M.A. Aguirre, Y. Jimenez-Gomez, P. Font, A. Rodriguez-Ariza, J.R. Peinado, E. Collantes-Estevez, R. Gonzalez-Conejero, C. Martinez, N. Barbarroja, C. Lopez-Pedrera, Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-TNFalpha. Arthritis Res. Ther. 17, 49 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Gandhi, B. Healy, T. Gholipour, S. Egorova, A. Musallam, M.S. Hussain, P. Nejad, B. Patel, H. Hei, S. Khoury, F. Quintana, P. Kivisakk, T. Chitnis, H.L. Weiner, Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol. 73(6), 729–740 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. H. Yamada, M. Itoh, I. Hiratsuka, S. Hashimoto, Circulating microRNAs in autoimmune thyroid diseases. Clin. Endocrinol. (Oxf.). 81, 276–281 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. F. Wang, S.J. Zhang, X. Yao, D.M. Tian, K.Q. Zhang, D.M. She, F.F. Guo, Q.W. Zhai, H. Ying, Y. Xue, Circulating microRNA-1a is a biomarker of Graves’ disease patients with atrial fibrillation. Endocrine 57, 125–137 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. I. Hiratsuka, H. Yamada, E. Munetsuna, S. Hashimoto, M. Itoh, Circulating microRNAs in Graves’ disease in relation to clinical activity. Thyroid 26, 1431–1440 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. L. Zheng, C. Zhuang, X. Wang, L. Ming, Serum miR-146a, miR-155, and miR-210 as potential markers of Graves’ disease. J. Clin. Lab. Anal. 32 (2018). https://doi.org/10.1002/jcla.22266

  19. R. Martinez-Hernandez, M. Sampedro-Nunez, A. Serrano-Somavilla, A.M. Ramos-Levi, H. de la Fuente, J.C. Trivino, A. Sanz-Garcia, F. Sanchez-Madrid, M. Marazuela, A. MicroRNA, Signature for evaluation of risk and severity of autoimmune thyroid diseases. J. Clin. Endocrinol. Metab. 103, 1139–1150 (2018)

    Article  PubMed  Google Scholar 

  20. M. Jiang, W. Ma, Y. Gao, K. Jia, Y. Zhang, H. Liu, Q. Sun, IL-22-induced miR-122-5p promotes keratinocyte proliferation by targeting Sprouty2. Exp. Dermatol. 26, 368–374 (2017)

    Article  CAS  PubMed  Google Scholar 

  21. I. Selmaj, M. Cichalewska, M. Namiecinska, G. Galazka, W. Horzelski, K.W. Selmaj, M.P. Mycko, Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann. Neurol. 81, 703–717 (2017)

    Article  CAS  PubMed  Google Scholar 

  22. Y.J. Su, I.C. Lin, L. Wang, C.H. Lu, Y.L. Huang, H.C. Kuo, Next generation sequencing identifies miRNA-based biomarker panel for lupus nephritis. Oncotarget 9, 27911–27919 (2018)

    PubMed  PubMed Central  Google Scholar 

  23. M. Liguori, N. Nuzziello, F. Licciulli, A. Consiglio, M. Simone, R.G. Viterbo, T.M. Creanza, N. Ancona, C. Tortorella, L. Margari, G. Grillo, P. Giordano, S. Liuni, M. Trojano, Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: an integrated approach to uncover novel pathogenic mechanisms of the disease. Hum. Mol. Genet. 27, 66–79 (2018)

    Article  CAS  PubMed  Google Scholar 

  24. F. Liu, N. Chen, R. Xiao, W. Wang, Z. Pan, miR-144-3p serves as a tumor suppressor for renal cell carcinoma and inhibits its invasion and metastasis by targeting MAP3K8. Biochem. Biophys. Res. Commun. 480, 87–93 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. Z.X. Cheng, Y.X. Song, Z.Y. Wang, Y. Wang, Y. Dong, miR-144-3p serves as a tumor suppressor by targeting FZD7 and predicts the prognosis of human glioblastoma. Eur. Rev. Med. Pharmacol. Sci. 21, 4079–4086 (2017)

    PubMed  Google Scholar 

  26. C. Wu, B. Xu, Y. Zhou, M. Ji, D. Zhang, J. Jiang, C. Wu, Correlation between serum IL-1beta and miR-144-3p as well as their prognostic values in LUAD and LUSC patients. Oncotarget 7, 85876–85887 (2016)

    PubMed  PubMed Central  Google Scholar 

  27. M. Wu, C. Huang, X. Huang, R. Liang, Y. Feng, X. Luo, MicroRNA-144-3p suppresses tumor growth and angiogenesis by targeting SGK3 in hepatocellular carcinoma. Oncol. Rep. 38, 2173–2181 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Y. Zhao, Z. Xie, J. Lin, P. Liu, MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am. J. Transl. Res. 9, 2437–2446 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. B. Zuo, J. Zhai, L. You, Y. Zhao, J. Yang, Z. Weng, L. Dai, Q. Wu, C. Ruan, Y. He, Plasma microRNAs characterising patients with immune thrombocytopenic purpura. Thromb. Haemost. 117, 1420–1431 (2017)

    Article  PubMed  Google Scholar 

  30. Y. Li, R. Huang, L. Wang, J. Hao, Q. Zhang, R. Ling, J. Yun, microRNA-762 promotes breast cancer cell proliferation and invasion by targeting IRF7 expression. Cell. Prolif. 48, 643–649 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. A. Paun, P.M. Pitha, The IRF family, revisited. Biochimie 89, 744–753 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. K. Honda, T. Taniguchi, IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. M.W. Russo, M.W. Fried, Side effects of therapy for chronic hepatitis C. Gastroenterology 124, 1711–1719 (2003)

    Article  PubMed  Google Scholar 

  34. P. Burman, T.H. Totterman, K. Oberg, F.A. Karlsson, Thyroid autoimmunity in patients on long term therapy with leukocyte-derived interferon. J. Clin. Endocrinol. Metab. 63, 1086–1090 (1986)

    Article  CAS  PubMed  Google Scholar 

  35. D.S. Ross, H.B. Burch, D.S. Cooper, M.C. Greenlee, P. Laurberg, A.L. Maia, S.A. Rivkees, M. Samuels, J.A. Sosa, M.N. Stan, M.A. Walter, 2016 American thyroid association guidelines for diagnosis and management of hyperthyroidism and other causes of thyrotoxicosis. Thyroid 26, 1343–1421 (2016)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the participants who took part in the studies.

Funding

This project was supported by grants from the National Natural Science Foundation of China (Nos 81670722 and 81873636), and Natural Science Foundation of Shanghai (18ZR1433800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinan Zhang or Qiu Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

This work was approved by the Ethics Committee of Jinshan Hospital, Fudan University. Written informed consents were obtained from all participants.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Wang, X., He, W. et al. Circulating microRNA-144-3p and miR-762 are novel biomarkers of Graves’ disease. Endocrine 65, 102–109 (2019). https://doi.org/10.1007/s12020-019-01884-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-01884-2

Keywords

Navigation