Skip to main content

Advertisement

Log in

Assessing the predictive accuracy of oral glucose effectiveness index using a calibration model

  • Endocrine Methods and Techniques
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Current reference methods for measuring glucose effectiveness (GE) are the somatostatin pancreatic glucose clamp and minimal model analysis of frequently sampled intravenous glucose tolerance test (FSIVGTT), both of which are laborious and not feasible in large epidemiological studies. Consequently, surrogate indices derived from an oral glucose tolerance test (OGTT) to measure GE (oGE) have been proposed and used in many studies. However, the predictive accuracy of these surrogates has not been formally validated. In this study, we used a calibration model analysis to evaluate the accuracy of surrogate indices to predict GE from the reference FSIVGTT (SgMM).

Methods

Subjects (n = 123, mean age 48 ± 11 years; BMI 35.9 ± 7.3 kg/m2) with varying glucose tolerance (NGT, n = 37; IFG/IGT, n = 78; and T2DM, n = 8) underwent FSIVGTT and OGTT on two separate days. Predictive accuracy was assessed by both root mean squared error (RMSE) of prediction and leave-one-out cross-validation-type RMSE of prediction (CVPE).

Results

As expected, insulin sensitivity, SgMM, and oGE were reduced in subjects with T2DM and IFG/IGT when compared with NGT. Simple linear regression analyses revealed a modest but significant relationship between oGE and SgMM (r = 0.25, p < 0.001). However, using calibration model, measured SgMM and predicted SgMM derived from oGE were modestly correlated (r = 0.21, p < 0.05) with the best fit line suggesting poor predictive accuracy. There were no significant differences in CVPE and RMSE among the surrogates, suggesting similar predictive ability.

Conclusions

Although OGTT-derived surrogate indices of GE are convenient and feasible, they have limited ability to robustly predict GE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Tonelli, P. Kishore, D.E. Lee, M. Hawkins, The regulation of glucose effectiveness: how glucose modulates its own production. Curr. Opin. Clin. Nutr. Metab. Care. 8(4), 450–456 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. J.D. Best, S.E. Kahn, M. Ader, R.M. Watanabe, T.C. Ni, R.N. Bergman, Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care 19(9), 1018–1030 (1996)

    Article  CAS  PubMed  Google Scholar 

  3. S.E. Kahn, R.L. Prigeon, D.K. McCulloch, E.J. Boyko, R.N. Bergman, M.W. Schwartz, J.L. Neifing, W.K. Ward, J.C. Beard, J.P. Palmer et al. The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes 43(4), 587–592 (1994)

    Article  CAS  PubMed  Google Scholar 

  4. C. Lorenzo, L.E. Wagenknecht, A.J. Karter, A.J. Hanley, M.J. Rewers, S.M. Haffner, Cross-sectional and longitudinal changes of glucose effectiveness in relation to glucose tolerance: the insulin resistance atherosclerosis study. Diabetes Care 34(9), 1959–1964 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  5. B.C. Martin, J.H. Warram, A.S. Krolewski, R.N. Bergman, J.S. Soeldner, C.R. Kahn, Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340(8825), 925–929 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. M.F. Nielsen, R. Basu, S. Wise, A. Caumo, C. Cobelli, R.A. Rizza, Normal glucose-induced suppression of glucose production but impaired stimulation of glucose disposal in type 2 diabetes: evidence for a concentration-dependent defect in uptake. Diabetes 47(11), 1735–1747 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. A. Basu, C. Dalla Man, R. Basu, G. Toffolo, C. Cobelli, R.A. Rizza, Effects of type 2 diabetes on insulin secretion, insulin action, glucose effectiveness, and postprandial glucose metabolism. Diabetes Care 32(5), 866–872 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M.B. Egede, J.E. Henriksen, T.T. Durck, K. Levin, C. Rantzau, G. Ward, H. Beck-Nielsen, F.P. Alford, Glucose effectiveness in nondiabetic relatives: dysglycemia and beta-cell function at 10 years. J. Clin. Endocrinol. Metab. 99(4), 1420–1424 (2014). https://doi.org/10.1210/jc.2013-3273

    Article  CAS  PubMed  Google Scholar 

  9. K. Karstoft, M.A. Clark, I. Jakobsen, S.H. Knudsen, G. van Hall, B.K. Pedersen, T.P.J. Solomon, Glucose effectiveness, but not insulin sensitivity, is improved after short-term interval training in individuals with type 2 diabetes mellitus: a controlled, randomised, crossover trial. Diabetologia 60(12), 2432–2442 (2017). https://doi.org/10.1007/s00125-017-4406-0

    Article  CAS  PubMed  Google Scholar 

  10. J.E. Henriksen, F. Alford, G. Ward, P. Thye-Ronn, K. Levin, O. Hother-Nielsen, C. Rantzau, R. Boston, H. Beck-Nielsen, Glucose effectiveness and insulin sensitivity measurements derived from the non-insulin-assisted minimal model and the clamp techniques are concordant. Diabetes Metab. Res. Rev. 26(7), 569–578 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. S. Nagasaka, I. Kusaka, K. Yamashita, Y. Funase, K. Yamauchi, M. Katakura, S. Ishibashi, T. Aizawa, Index of glucose effectiveness derived from oral glucose tolerance test. Acta Diabetol. 49(Suppl 1), S195–S204 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. R. Weiss, S.N. Magge, N. Santoro, C. Giannini, R. Boston, T. Holder, M. Shaw, E. Duran, K.J. Hershkop, S. Caprio, Glucose effectiveness in obese children: relation to degree of obesity and dysglycemia. Diabetes Care 38(4), 689–695 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. American Diabetes, A, Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62–S69 (2011). https://doi.org/10.2337/dc11-S062

    Article  CAS  Google Scholar 

  14. S.J. Healy, K. Osei, T. Gaillard, Comparative study of glucose homeostasis, lipids and lipoproteins, HDL functionality, and cardiometabolic parameters in modestly severely obese African Americans and White Americans with prediabetes: implications for the metabolic paradoxes. Diabetes Care 38(2), 228–235 (2015). https://doi.org/10.2337/dc14-1803

    Article  CAS  PubMed  Google Scholar 

  15. R. Muniyappa, V. Sachdev, S. Sidenko, M. Ricks, D.C. Castillo, A.B. Courville, A.E. Sumner, Postprandial endothelial function does not differ in women by race: an insulin resistance paradox? Am. J. Physiol. Endocrinol. Metab. 302(2), E218–E225 (2012). https://doi.org/10.1152/ajpendo.00434.2011

    Article  CAS  PubMed  Google Scholar 

  16. S. Soonthornpun, W. Setasuban, A. Thamprasit, W. Chayanunnukul, C. Rattarasarn, A. Geater, Novel insulin sensitivity index derived from oral glucose tolerance test. J. Clin. Endocrinol. Metab. 88(3), 1019–1023 (2003). https://doi.org/10.1210/jc.2002-021127

    Article  CAS  PubMed  Google Scholar 

  17. C. Giannini, R. Weiss, A. Cali, R. Bonadonna, N. Santoro, B. Pierpont, M. Shaw, S. Caprio, Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes 61(3), 606–614 (2012). https://doi.org/10.2337/db11-1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. I. Aloulou, J.F. Brun, J. Mercier, Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: comparison with the minimal model analysis of an intravenous glucose tolerance test. Metabolism 55(5), 676–690 (2006). https://doi.org/10.1016/j.metabol.2006.01.002

    Article  CAS  PubMed  Google Scholar 

  19. J.F. Brun, E. Ghanassia, C. Fedou, S. Bordenave, E. Raynaud de Mauverger, J: Mercier, Assessment of insulin sensitivity (S I) and glucose effectiveness (S G) from a standardized hyperglucidic breakfast test in type 2 diabetics exhibiting various levels of insulin resistance. Acta Diabetol. 50(2), 143–153 (2013). https://doi.org/10.1007/s00592-010-0232-2

    Article  CAS  PubMed  Google Scholar 

  20. R. Muniyappa, B.A. Irving, U.S. Unni, W.M. Briggs, K.S. Nair, M.J. Quon, A.V. Kurpad, Limited predictive ability of surrogate indices of insulin sensitivity/resistance in Asian-Indian men. Am. J. Physiol. Endocrinol. Metab. 299(6), E1106–E1112 (2010). https://doi.org/10.1152/ajpendo.00454.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. P. Singal, R. Muniyappa, R. Chisholm, G. Hall, H. Chen, M.J. Quon, K.J. Mather, Simple modeling allows prediction of steady-state glucose disposal rate from early data in hyperinsulinemic glucose clamps. Am. J. Physiol. Endocrinol. Metab. 298(2), E229–E236 (2010). https://doi.org/10.1152/ajpendo.00603.2009

    Article  CAS  PubMed  Google Scholar 

  22. M. Hawkins, I. Gabriely, R. Wozniak, K. Reddy, L. Rossetti, H. Shamoon, Glycemic control determines hepatic and peripheral glucose effectiveness in type 2 diabetic subjects. Diabetes 51(7), 2179–2189 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. K. Osei, D.A. Cottrell, Minimal model analyses of insulin sensitivity and glucose-dependent glucose disposal in black and white Americans: a study of persons at risk for type 2 diabetes. Eur. J. Clin. Invest. 24(12), 843–850 (1994)

    Article  CAS  PubMed  Google Scholar 

  24. A.G. Amoah, S.K. Owusu, O.M. Ayittey, D.P. Schuster, K. Osei, Minimal model analyses of beta cell secretion, insulin sensitivity and glucose effectiveness in glucose tolerant, non-diabetic first-degree relatives of Ghanaian patients with type 2 diabetes and healthy control subjects. Ethn. Dis. 11(2), 201–210 (2001)

    CAS  PubMed  Google Scholar 

  25. K. Osei, D.A. Cottrell, M.M. Orabella, Insulin sensitivity, glucose effectiveness, and body fat distribution pattern in nondiabetic offspring of patients with NIDDM. Diabetes Care 14(10), 890–896 (1991)

    Article  CAS  PubMed  Google Scholar 

  26. R.A. DeFronzo, Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37(6), 667–687 (1988)

    Article  CAS  PubMed  Google Scholar 

  27. C. Bogardus, S. Lillioja, B.V. Howard, G. Reaven, D. Mott, Relationships between insulin secretion, insulin action, and fasting plasma glucose concentration in nondiabetic and noninsulin-dependent diabetic subjects. J. Clin. Invest. 74(4), 1238–1246 (1984). https://doi.org/10.1172/JCI111533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. P. Vuguin, A.B. Sopher, H. Roumimper, V. Chin, M. Silfen, D.J. McMahon, I. Fennoy, S.E. Oberfield, Alterations in glucose effectiveness and insulin dynamics: polycystic ovary syndrome or body mass index. Horm. Res. Paediatr. 87(6), 359–367 (2017). https://doi.org/10.1159/000471804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Intramural Research Programs of NIDDK (R.M.), American Diabetes Association Clinical and Translational Award Number: 0-11-CT-39, and Award Number UL1RR025755 from the National Center for Research Resources, funded by the Office of the Director, National Institutes of Health (NIH) and supported by the NIH Roadmap for Medical Research.

Author contributions

R.M. conceived and designed the study, acquired and analyzed data, drafted and reviewed the manuscript. M.G., S.S., S.G., and B.S.A. analyzed data, drafted, and reviewed the manuscript. R.M. and S.A. performed the statistical analyses and drafted the manuscript T.R.G. and K.O. designed the study, acquired data, and drafted and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranganath Muniyappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glicksman, M., Grewal, S., Sortur, S. et al. Assessing the predictive accuracy of oral glucose effectiveness index using a calibration model. Endocrine 63, 391–397 (2019). https://doi.org/10.1007/s12020-018-1804-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-018-1804-0

Keywords

Navigation