Skip to main content

Advertisement

Log in

Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 28 January 2016

Abstract

Decreases in serum testosterone concentrations in aging men are associated with metabolic disorders. Testosterone has been reported to increase GLUT4-dependent glucose uptake in skeletal muscle cells and cardiomyocytes. However, studies on glucose uptake occurring in response to testosterone stimulation in adipocytes are currently not available. This study was designed to determine the effects of testosterone on glucose uptake in adipocytes. Glucose uptake was assessed with 2-[3H] deoxyglucose in 3T3-L1 adipocytes. GLUT4 translocation was evaluated in plasma membrane (PM) sheets and PM fractions by immunofluorescence and immunoblotting, respectively. Activation of GLUT4 translocation-related protein kinases, including Akt, AMPK, LKB1, CaMKI, CaMKII, and Cbl was followed by immunoblotting. Expression levels of androgen receptor (AR) mRNA and AR translocation to the PM were assessed by real-time RT-PCR and immunoblotting, respectively. The results showed that both high-dose (100 nM) testosterone and testosterone-BSA increased glucose uptake and GLUT4 translocation to the PM, independently of the intracellular AR. Testosterone and testosterone-BSA stimulated the phosphorylation of AMPK, LKB1, and CaMKII. The knockdown of LKB1 by siRNA attenuated testosterone- and testosterone-BSA-stimulated AMPK phosphorylation and glucose uptake. These results indicate that high-dose testosterone and testosterone-BSA increase GLUT4-dependent glucose uptake in 3T3-L1 adipocytes by inducing the LKB1/AMPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMPK:

5′ adenosine monophosphate-activated protein kinase

ANOVA:

One-way analysis of variance

AR:

Androgen receptor

BSA:

Bovine serum albumin

CaMKI:

Ca2+/calmodulin-dependent protein kinase I

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CaMKKβ:

Ca2+/calmodulin-dependent protein kinase kinase β

2-DG:

2-deoxy-d-glucose

FCS:

Fetal calf serum

GLUT4:

Glucose transporter 4

3H-2DG:

2-[3H] deoxyglucose

KPRH:

Krebs-Ringer-Phosphate-Hepes

LKB1:

Liver kinase B1

PI3K:

Phosphatidylinositol-3 kinase

PM:

Plasma membrane

References

  1. R.A. DeFronzo, Lilly Lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37, 667–687 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. A.H. Khan, J.E. Pessin, Insulin regulation of glucose uptake: a complex interplay of intracellular signalling pathways. Diabetologia 45, 1475–1483 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. S.H. Chiang, C.A. Baumann, M. Kanzaki, D.C. Thurmond, R.T. Watson, C.L. Neudauer, I.G. Macara, J.E. Pessin, A.R. Saltiel, Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410, 944–948 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. H.F. Kramer, C.A. Witczak, N. Fujii, N. Jessen, E.B. Taylor, D.E. Arnolds, K. Sakamoto, M.F. Hirshman, L.J. Goodyear, Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55, 2067–2076 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. J.W. Ryder, A.V. Chibalin, J.R. Zierath, Intracellular mechanisms underlying increases in glucose uptake in response to insulin or exercise in skeletal muscle. Acta Physiol. Scand. 171, 249–257 (2001)

    Article  CAS  PubMed  Google Scholar 

  6. T. Imamura, P. Vollenweider, K. Egawa, M. Clodi, K. Ishibashi, N. Nakashima, S. Ugi, J.W. Adams, J.H. Brown, J.M. Olefsky, G alpha-q/11 protein plays a key role in insulin-induced glucose transport in 3T3-L1 adipocytes. Mol. Cell. Biol. 19, 6765–6774 (1999)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. R.R. Russell, R. Bergeron, G.I. Shulman, L.H. Young, Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 277, H643–H649 (1999)

    CAS  PubMed  Google Scholar 

  8. Y. Shen, N. Honma, K. Kobayashi, L.N. Jia, T. Hosono, K. Shindo, T. Ariga, T. Seki, Cinnamon extract enhances glucose uptake in 3T3-L1 adipocytes and C2C12 myocytes by inducing LKB1-AMP-activated protein kinase signaling. PLoS ONE 9, 1–9 (2014)

    Google Scholar 

  9. L. Wang, H. Hayashi, K. Kishi, L. Huang, A. Hagi, K. Tamaoka, P.T. Hawkins, Y. Ebina, Gi-mediated translocation of GLUT4 is independent of p85/p110α and p110γ phosphoinositide 3-kinases but might involve the activation of Akt kinase. Biochem. J. 345, 543–555 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. J.R. Wu-Wong, C.E. Berg, J. Wang, W.J. Chiou, B. Fissel, Endothelin stimulates glucose uptake and GLUT4 translocation via activation of endothelin ET(A) receptor in 3T3-L1 adipocytes. J. Biol. Chem. 274, 8103–8110 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. D.E. Laaksonen, L. Niskanen, K. Punnonen, K. Nyyssönen, T.P. Tuomainen, V.P. Valkonen, R. Salonen, J.T. Salonen, Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care 27, 1036–1041 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. M. Fukui, J. Soh, M. Tanaka, Y. Kitagawa, G. Hasegawa, T. Yoshikawa, T. Miki, N. Nakamura, Low serum testosterone concentration in middle-aged men with type 2 diabetes. Endocr. J. 54, 871–877 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. A. Rodriguez, D.C. Muller, E.J. Metter, M. Maggio, S.M. Harman, M.R. Blackman, R. Andres, Aging, androgens, and the metabolic syndrome in a longitudinal study of aging. J. Clin. Endocrinol. Metab. 92, 3568–3572 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. A. Holmäng, P. Björntorp, The effects of testosterone on insulin sensitivity in male rats. Acta Physiol. Scand. 146, 505–510 (1992)

    Article  PubMed  Google Scholar 

  15. T. Muthusamy, P. Murugesan, K. Balasubramanian, Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat. Metabolism 58, 1581–1592 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. E. Maneschi, A. Morelli, S. Filippi, I. Cellai, P. Comeglio, B. Mazzanti, T. Mello, A. Calcagno, E. Sarchielli, L. Vignozzi, F. Saad, R. Vettor, G.B. Vannelli, M. Maggi, Testosterone treatment improves metabolic syndrome-induced adipose tissue derangements. J. Endocrinol. 215, 347–362 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. T. Senmaru, M. Fukui, H. Okada, Y. Mineoka, M. Yamazaki, M. Tsujikawa, G. Hasegawa, J. Kitawaki, H. Obayashi, N. Nakamura, Testosterone deficiency induces markedly decreased serum triglycerides, increased small dense LDL, and hepatic steatosis mediated by dysregulation of lipid assembly and secretion in mice fed a high-fat diet. Metabolism 62, 851–860 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. K. Sato, M. Iemitsu, Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 294, 961–968 (2008)

  19. C. Wilson, A. Contreras-Ferrat, N. Venegas, C. Osorio-Fuentealba, M. Pávez, K. Montoya, J. Durán, R. Maass, S. Lavandero, M. Estrada, Testosterone increases GLUT4-dependent glucose uptake in cardiomyocytes. J. Cell. Physiol. 228, 2399–2407 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. L.J. Robinson, S. Pang, D.S. Harris, J. Heuser, D.E. James, Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3-L1 adipocytes: effects of ATP, insulin, and GTPγS and localization of GLUT4 to clathrin lattices. J. Cell Biol. 117, 1181–1196 (1992)

    Article  CAS  PubMed  Google Scholar 

  21. S. Nishiumi, H. Ashida, Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci. Biotechnol. Biochem. 71, 2343–2346 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. C.A. Heinlein, C. Chang, The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol. 16, 2181–2187 (2002)

  24. C.D. Foradori, M.J. Weiser, R.J. Handa, Non-genomic actions of androgens. Front. Neuroendocrinol. 29, 169–181 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Y.C. Chen, S.D. Lee, C.H. Kuo, L.T. Ho, The effects of altitude training on the AMPK-related glucose transport pathway in the red skeletal muscle both lean and obese Zuker rats. High Alt. Med. Biol. 12, 371–378 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. M.J. Sanders, P.O. Grondin, B.D. Hegarty, M.A. Snowden, D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007)

  27. A. Gormand, E. Henriksson, K. Ström, T.E. Jensen, K. Sakamoto, O. Göransson, Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes. J. Cell. Biochem. 112, 1364–1375 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. S.S. Hook, A.R. Means, Ca(2+)/CaM-dependent kinases: from activation to function. Annu. Rev. Pharmacol. Toxicol. 41, 471–505 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. A. Hudmon, H. Schulman, Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem. J. 364, 593–611 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. K.J. McInnes, K.A. Brown, N.I. Hunger, E.R. Simpson, Regulation of LKB1 expression by sex hormones in adipocytes. Int. J. Obes (Lond) 36, 982–985 (2012)

    Article  CAS  Google Scholar 

  31. K.J. McInnes, A. Corbould, E.R. Simpson, M.E. Jones, Regulation of adenosine 5′, monophosphate-activated protein kinase and lipogenesis by androgens contributes to visceral obesity in an estrogen-deficient state. Endocrinology 147, 5907–5913 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. M. Fu, T. Sun, A.L. Bookout, M. Downes, R.T. Yu, R.M. Evans, D.J. Mangelsdorf, A nuclear receptor atlas: 3T3-L1 adipogenesis. Mol. Endocrinol. 19, 2437–2450 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. J.O. Lee, S.K. Lee, J.H. Kim, N. Kim, G.Y. You, J.W. Moon, S.J. Kim, S.H. Park, H.S. Kim, Metformin regulates glucose transporter 4 (GLUT4) translocation through AMP-activated protein kinase (AMPK)-mediated Cbl/CAP signaling in 3T3-L1 preadipocyte cells. J. Biol. Chem. 287, 44121–44129 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Japan Society for the Promotion of Science KAKENHI (Grant Number 24591339 (M. Fukui)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takafumi Senmaru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsuhashi, K., Senmaru, T., Fukuda, T. et al. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine 51, 174–184 (2016). https://doi.org/10.1007/s12020-015-0666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0666-y

Keywords

Navigation