Skip to main content

Advertisement

Log in

Baseline glycemic parameters predict the hemoglobin A1c response to DPP-4 inhibitors

Meta-regression analysis of 78 randomized controlled trials with 20,053 patients

  • Meta-Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Ability to predict which patients might benefit more of therapy might facilitate personalization of treatment. The aim of this study was to obtain information about clinical characteristics which might predict the HbA1c response to DPP-4 inhibitors. We conducted an electronic search without restriction for randomized controlled trials (RCTs) involving DPP-4 inhibitors (vildagliptin, sitagliptin, saxagliptin, linagliptin, and alogliptin). RCTs were included if they lasted at least 12 weeks, reported the effect of DPP-4 inhibitors on HbA1c level, and the number of patients in any arm was >30. We did a meta-regression analysis. Seventy-eight articles were eligible, with 79 arms and 20,503 patients. For all arms, the decrease of HbA1c was −0.74 % (95 % CI −0.80 to −0.67 %), with considerable heterogeneity (I 2 = 97 %, P < 0.0001): the greatest HbA1c decrease was seen at 52 weeks (8 arms, 3,338 patients, −0.88 %, 95 % CI −1.10 to −0.66 %). In univariate meta-regression analysis, baseline HbA1c explained 22 % of variance of the HbA1c response to treatment, while fasting glucose and type of DPP-4 inhibitor explained an additional 19 and 12 %, respectively; age, duration of treatment, previous therapy, and type of statistical analysis of RCTs were without influence. In the multivariate meta-regression model, baseline HbA1c, fasting glucose, and type of DPP-4 inhibitor explained 61 % of total variance. The HbA1c response to DPP-4 inhibitors can be modulated mainly by baseline HbA1c and fasting glucose levels: a greater absolute reduction of baseline HbA1c is seen in patients with higher baseline HbA1c and lower fasting glucose level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.R. Whiting, L. Guariguata, C. Weil, J. Shaw, IDF Diabetes Atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 94, 311–321 (2011)

    Article  PubMed  Google Scholar 

  2. A.S. Go, D. Mozaffarian, V.L. Roger et al., On behalf of the American Heart Association Statistics Committee an Stroke Statistics Subcommittee. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013)

    Article  PubMed  Google Scholar 

  3. K. Esposito, A. Ceriello, D. Giugliano, Does personalized diabetology overcome clinical uncertainty and therapeutic inertia in type 2 diabetes? Endocrine (2013). doi:10.1007/s12020-013-9918-x

    Google Scholar 

  4. T. Karagiannis, P. Paschos, K. Paletas, D.R. Matthews, A. Tsapas, Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: systematic review and meta-analysis. BMJ 344, e1369 (2013)

    Article  Google Scholar 

  5. Y. Takeda, Y. Fujita, J. Honjo, T. Yanagimachi, H. Sakagami, Y. Takiyama, Y. Makino, A. Abiko, T.J. Kieffer, M. Haneda, Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diabetologia 55, 404–412 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. M.A. Nauck, Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124, S3–S18 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. S.E. Inzucchi, R.M. Bergenstal, J.B. Buse, M. Diamant, E. Ferrannini, M. Nauck, A.L. Peters, A. Tsapas, R. Wender, Matthews, Management of hyperglycemia in type 2 diabetes: a patient centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the study of diabetes (EASD). Diabetes Care 35, 1364–1379 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. American Association of Clinical Endocrinologists, AACE comprehensive diabetes management algorithm. Endocr. Pract. 19, 331 (2013)

    Google Scholar 

  9. O.J. Phung, J.M. Scholle, M. Talwar, G.I. Coleman, Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 303, 1410–1418 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. J.L. Gros, C.K. Kramer, C.B. Leitaõ, N. Hawkins, L.V. Viana, B.D. Schaan, L.C. Pinto, T.C. Rodrigues, M.J. Azevedo, For the Diabetes and Endocrinology Meta-analysis Group (DEMA): effect of antihyperglycemic agents added to metformin and a sulfonylurea on glycemic control and weight gain in type 2 diabetes: a network meta-analysis. Ann. Intern. Med. 154, 672–679 (2011)

    Article  Google Scholar 

  11. K. Esposito, P. Chiodini, G. Bellastella, M.I. Maiorino, D. Giugliano, Proportion of patients at HbA1c target <7% with eight classes of antidiabetic drugs in type 2 diabetes: systematic review of 218 randomized controlled trials with 78,945 patients. Diabetes Obes. Metab. 14, 228–233 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. J.J. Goldberger, A.E. Buxton, Personalized medicine vs guideline-based medicine. JAMA 309, 2559–2560 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P. Ioannidis, M. Clarke, P.J. Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann. Intern. Med. 151, W65–W94 (2009)

    Article  PubMed  Google Scholar 

  14. A.D. Deeks, M.J. Bradburn, Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis, in Systematic Reviews in Health Care, ed. by M.D.-S.G. Egger, D.G. Altman (BMJ Publishing, London, 2001), pp. 285–312

    Chapter  Google Scholar 

  15. H.C. Van Houwelingen, L.R. Arends, T. Stijne, Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat. Med. 21, 589–624 (2002)

    Article  PubMed  Google Scholar 

  16. J.P. Higgins, S.G. Thompson, Controlling the risk of spurious findings from metaregression. Stat. Med. 23, 1663–1682 (2004)

    Article  PubMed  Google Scholar 

  17. M.K. Ali, K. McKeever Bullard, J.B. Saaddine, C.C. Cowie, G. Imperatore, E.W. Gregg, Achievement of goals in U.S. diabetes care, 1999–2010. N. Engl. J. Med. 368, 1613–1624 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. I. Raz, M.C. Riddle, J. Rosenstock, J.B. Buse, S.E. Inzucchi, P.D. Home, S. Del Prato, E. Ferrannini, J.C. Chan, L.A. Leiter, D. Leroith, R. Defronzo, W.T. Cefalu, Personalized management of hyperglycemia in type 2 diabetes: reflections from a diabetes care editors’ expert forum. Diabetes Care 36, 1779–1788 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. A.J. Scheen, G. Charpentier, C.J. Ostgren, A. Hellqvist, I. Gause-Nilsson, Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 26, 540–549 (2010)

    Article  CAS  PubMed  Google Scholar 

  20. B. Göke, K. Hershon, D. Kerr, A. Calle Pascual, A. Schweizer, J. Foley, Q. Shao, S. Dejager, Efficacy and safety of vildagliptin monotherapy during 2-year treatment of drug-naïve patients with type 2 diabetes: comparison with metformin. Horm. Metab. Res. 40, 892–895 (2008)

    Article  PubMed  Google Scholar 

  21. D. Williams-Herman, J. Johnson, R. Teng, G. Golm, K.D. Kaufman, B.J. Goldstein, J.M. Amatruda, Efficacy and safety of sitagliptin and metformin as initial combination therapy and as monotherapy over 2 years in patients with type 2 diabetes. Diabetes Obes. Metab. 12, 442–451 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. B.M. Scirica, D.L. Bhatt, E. Braunwald, P.G. Steg, J. Davidson, B. Hirshberg, P. Ohman, R. Frederich, S.D. Wiviott, E.B. Hoffman, M.A. Cavender, J.A. Udell, N.R. Desai, O. Mozenson, D.K. McGuire, K.K. Ray, L.A. Leiter, I. Raz, The SAVOR-TIMI 53 Steering Committee and Investigators, Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N. Engl. J. Med. 369, 1317–1326 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. W.B. White, C.P. Cannon, S.R. Heller, S.E. Nissen, R.M. Bergenstal, G.L. Bakris, A.T. Perez, P.R. Fleck, C.R. Mehta, S. Kupfer, C. Wilson, W.C. Cushman, F. Zannad, The EXAMINE Investigators, Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N. Engl. J. Med. 369, 1327–1335 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. C. Ess, F. Sudweeks, Culture, Technology, Communication: Towards an Intercultural Global Village (SUNY Press, Albany, 2001), p. 90

    Google Scholar 

Download references

Acknowledgments

This study was partly funded by a grant from the Second University of Naples, Italy.

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Esposito.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, K., Chiodini, P., Capuano, A. et al. Baseline glycemic parameters predict the hemoglobin A1c response to DPP-4 inhibitors. Endocrine 46, 43–51 (2014). https://doi.org/10.1007/s12020-013-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-013-0090-0

Keywords

Navigation