Skip to main content

Advertisement

Log in

A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Diabetes mellitus is one of the most common chronic diseases across the world. Cardiovascular complication is the major morbidity and mortality among the diabetic patients. Diabetic cardiomyopathy, a new entity independent of coronary artery disease or hypertension, has been increasingly recognized by clinicians and epidemiologists. Cardiac dysfunction is the major characteristic of diabetic cardiomyopathy. For a better understanding of diabetic cardiomyopathy and necessary treatment strategy, several pathological mechanisms such as impaired calcium handling and increased oxidative stress, have been proposed through clinical and experimental observations. In this review, we will discuss the development of cardiac dysfunction, the mechanisms underlying diabetic cardiomyopathy, diagnostic methods, and treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. H. King, R.E. Aubert, W.H. Herman, Global burden of diabetes, 1995–2025—prevalence, numerical estimates, and projections. Diabetes Care 21(9), 1414–1431 (1998). doi:10.2337/diacare.21.9.1414

    Article  PubMed  CAS  Google Scholar 

  2. S. Rubler, Y.Z. Yuceoglu, T. Kumral, A. Grishman, A.W. Branwood, J. Dlugash, New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Cardiol. 30(6), 595–602 (1972). doi:10.1016/0002-9149(72)90595-4

    Article  PubMed  CAS  Google Scholar 

  3. T.J. Regan, M.M. Lyons, S.S. Ahmed, G.E. Levinson, H.A. Oldewurtel, M.R. Ahmad, B. Haider, Evidence for cardiomyopathy in familial dabetes-mellitus. J. Clin. Invest. 60(4), 885–899 (1977). doi:10.1172/jci108843

    Article  Google Scholar 

  4. E. Astorri, P. Fiorina, A. Astorri, G.A. Contini, D. Albertini, G. Magnati, M. Lanfredini, Isolated and preclinical impairment of left ventricular filling in insulin-dependent and non-insulin-dependent diabetic patients. Clin. Cardiol. 20(6), 536–540 (1997). doi:10.1002/clc.4960200606

    Article  PubMed  CAS  Google Scholar 

  5. M. Zabalgoitia, M.F. Ismaeil, L. Anderson, F.A. Maklady, Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am. J. Cardiol. 87(3), 320–323 (2001). doi:10.1016/s0002-9149(00)01366-7

    Article  PubMed  CAS  Google Scholar 

  6. J.K. Boyer, S. Thanigaraj, K.B. Schechtman, J.E. Perez, Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am. J. Cardiol. 93(7), 870–875 (2004). doi:10.1016/j.amjcard.2003.12.026

    Article  PubMed  Google Scholar 

  7. W. Hsueh, E.D. Abel, J.L. Breslow, N. Maeda, R.C. Davis, E.A. Fisher, H. Dansky, D.A. McClain, R. McIndoe, M.K. Wassef, C. Rabadan-Diehl, I.J. Goldberg, Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res. 100(10), 1415–1427 (2007). doi:10.1161/01.RES.0000266449.37396.1f

    Article  PubMed  CAS  Google Scholar 

  8. J.C. Russell, S.D. Proctor, Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc. Pathol. 15(6), 318–330 (2006). doi:10.1016/j.carpath.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  9. C. Christoffersen, E. Bollano, M.L.S. Lindegaard, E.D. Bartels, J.P. Goetze, C.B. Andersen, L.B. Nielsen, Cardiac lipid accumulation associated with diastolic dysfunction in obese mice. Endocrinology 144(8), 3483–3490 (2003). doi:10.1210/en.2003-0242

    Article  PubMed  CAS  Google Scholar 

  10. F. Dong, X. Zhang, X. Yang, L.B. Esberg, H. Yang, Z. Zhang, B. Culver, J. Ren, Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J. Endocrinol. 188(1), 25–36 (2006). doi:10.1677/joe.1.06241

    Article  PubMed  CAS  Google Scholar 

  11. T.O. Stolen, M.A. Hoydal, O.J. Kemi, D. Catalucci, M. Ceci, E. Aasum, T. Larsen, N. Rolim, G. Condorelli, G.L. Smith, U. Wisloff, Interval training normalizes cardiomyocyte function, diastolic Ca(2+) control, and SR Ca(2+) release synchronicity in a mouse model of diabetic cardiomyopathy. Circ. Res. 105(6), U527–U547 (2009). doi:10.1161/circresaha.109.199810

    Article  CAS  Google Scholar 

  12. Z.Y. Fang, J.B. Prins, T.H. Marwick, Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr. Rev. 25(4), 543–567 (2004). doi:10.1210/er.2003-0012

    Article  PubMed  CAS  Google Scholar 

  13. Z.Y. Fang, R. Schull-Meade, R. Leano, P.M. Mottram, J.B. Prins, T.H. Marwick, Screening for heart disease in diabetic subjects. Am. Heart J. 149(2), 349–354 (2005). doi:10.1016/j.ahj.2004.06.021

    Article  PubMed  Google Scholar 

  14. Z.Y. Fang, S. Yuda, V. Anderson, L. Short, C. Case, T.H. Marwick, Echocardiographic detection of early diabetic myocardial disease. J. Am. Coll. Cardiol. 41(4), 611–617 (2003). doi:10.1016/s0735-1097(02)02869-3

    Article  PubMed  CAS  Google Scholar 

  15. C.M. Yu, H. Lin, H. Yang, S.L. Kong, Q. Zhang, S.W.L. Lee, Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation 105(10), 1195–1201 (2002). doi:10.1161/hc1002.105185

    Article  PubMed  Google Scholar 

  16. P. Yue, T. Arai, M. Terashima, A.Y. Sheikh, F. Cao, D. Charo, G. Hoyt, R.C. Robbins, E.A. Ashley, J. Wu, P.C. Yang, P.S. Tsao, Magnetic resonance imaging of progressive cardiomyopathic changes in the db/db mouse. Am. J. Physiol. Heart Circul. Physiol. 292(5), H2106–H2118 (2007). doi:10.1152/ajpheart.00856.2006

    Article  CAS  Google Scholar 

  17. T. Radovits, S. Korkmaz, S. Loganathan, E. Barnucz, T. Bomicke, R. Arif, M. Karck, G. Szabo, Comparative investigation of the left ventricular pressure-volume relationship in rat models of type 1 and type 2 diabetes mellitus. Am. J. Physiol. Heart Circul. Physiol. 297(1), H125–H133 (2009). doi:10.1152/ajpheart.00165.2009

    Article  CAS  Google Scholar 

  18. A. Van den Bergh, W. Flameng, P. Herijgers, Type II diabetic mice exhibit contractile dysfunction but maintain cardiac output by favourable loading conditions. Eur. J. Heart Fail. 8(8), 777–783 (2006). doi:10.1016/j.ejheart.2006.03.001

    Article  PubMed  CAS  Google Scholar 

  19. S.W. Zarich, R.W. Nesto, Diabetic cardiomyopathy. Am. Heart J. 118(5), 1000–1012 (1989). doi:10.1016/0002-8703(89)90236-6

    Article  PubMed  CAS  Google Scholar 

  20. R. Coleman, T. Hayek, S. Keidar, M. Aviram, A mouse model for human atherosclerosis: long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E-0) mice. Acta Histochem. 108(6), 415–424 (2006). doi:10.1016/j.acthis.2006.07.002

    Article  PubMed  CAS  Google Scholar 

  21. J.F. James, T.E. Hewett, J. Robbins, Cardiac physiology in transgenic mice. Circ. Res. 82(4), 407–415 (1998)

    PubMed  CAS  Google Scholar 

  22. D. An, B. Rodrigues, Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am. J. Physiol. Heart Circul. Physiol. 291(4), H1489–H1506 (2006). doi:10.1152/ajpheart.00278.2006

    Article  CAS  Google Scholar 

  23. S. Boudina, E.D. Abel, Diabetic cardiomyopathy revisited. Circulation 115(25), 3213–3223 (2007). doi:10.1161/circulationaha.106.679597

    Article  PubMed  Google Scholar 

  24. S. Fleischer, M. Inui, Biochemistry and biophysics of excitation-contraction coupling. Annu. Rev. Biophys. Biophys. Chem. 18, 333–364 (1989). doi:10.1146/annurev.biophys.18.1.333

    Article  PubMed  CAS  Google Scholar 

  25. D.A. Cesario, R. Brar, K. Shivkumar, Alterations in ion channel physiology in diabetic cardiomyopathy. Endocrinol. Metabol. Clin. North Amer. 35(3), 601–610 (2006). doi:10.1016/j.ecl.2006.05.002

    Article  CAS  Google Scholar 

  26. G.D. Lopaschuk, A.G. Tahiliani, R. Vadlamudi, S. Katz, J.H. McNeill, Cardiac sarcoplasmic-reticulum function in insulin-treated diabetic rats. Am. J. Physiol. 245(6), H969–H976 (1983)

    PubMed  CAS  Google Scholar 

  27. G.N. Pierce, N.S. Dhalla, Cardiac myofibrillar ATPase activity in diabetic rats. J. Mol. Cell. Cardiol. 13(12), 1063–1069 (1981). doi:10.1016/0022-2828(81)90296-0

    Article  PubMed  CAS  Google Scholar 

  28. K.M. Choi, Y. Zhong, B.D. Hoit, I.L. Grupp, H. Hahn, K.W. Dilly, S. Guatimosim, W.J. Lederer, M.A. Matlib, Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am. J. Physiol. Heart Circul. Physiol. 283(4), H1398–H1408 (2002). doi:10.1152/ajpheart.00313.2002

    CAS  Google Scholar 

  29. L. Pereira, J. Matthes, I. Schuster, H.H. Valdivia, S. Herzig, S. Richard, A.M. Gomez, Mechanisms of Ca2+(i) transient decrease in cardiomyopathy of db/db type 2 diabetic mice. Diabetes 55(3), 608–615 (2006). doi:10.2337/diabetes.55.03.06.db05-1284

    Article  PubMed  CAS  Google Scholar 

  30. D.D. Belke, E.A. Swanson, W.H. Dillmann, Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53(12), 3201–3208 (2004). doi:10.2337/diabetes.53.12.3201

    Article  PubMed  CAS  Google Scholar 

  31. H. Kashihara, Z.Q. Shi, J.Z. Yu, J.H. McNeill, G.F. Tibbits, Effects of diabetes and hypertension on myocardial Na+–Ca2+exchange. Can. J. Physiol. Pharmacol. 78(1), 12–19 (2000). doi:10.1139/cjpp-78-1-12

    Article  PubMed  CAS  Google Scholar 

  32. N. Noda, H. Hayashi, H. Miyata, S. Suzuki, A. Kobayashi, N. Yamazaki, Cytosolic Ca2+ concentration and pH of diabetic rat myocytes during metabolic inhibition. J. Mol. Cell. Cardiol. 24(4), 435–446 (1992). doi:10.1016/0022-2828(92)93197-r

    Article  PubMed  CAS  Google Scholar 

  33. C.E. Flarsheim, I.L. Grupp, M.A. Matlib, Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am. J. Physiol. Heart Circul. Physiol. 271(1), H192–H202 (1996)

    CAS  Google Scholar 

  34. P.J. Oliveira, R. Seica, P.M. Coxito, A.P. Rolo, C.M. Palmeira, M.S. Santos, A.J.M. Moreno, Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett. 554(3), 511–514 (2003). doi:10.1016/s0014-5793(03)01233-x

    Article  PubMed  CAS  Google Scholar 

  35. S. Raha, B.H. Robinson, Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25(10), 502–508 (2000). doi:10.1016/s0968-0004(00)01674-1

    Article  PubMed  CAS  Google Scholar 

  36. D.C. Wallace, A mitochondrial paradigm for degenerative diseases and ageing. Novartis Found. symp. 235, 247–263 (2001). discussion 263–246

    Article  PubMed  CAS  Google Scholar 

  37. A. Frustaci, J. Kajstura, C. Chimenti, I. Jakoniuk, A. Leri, A. Maseri, B. Nadal-Ginard, P. Anversa, Myocardial cell death in human diabetes. Circ. Res. 87(12), 1123–1132 (2000)

    PubMed  CAS  Google Scholar 

  38. L. Cai, J.X. Wang, Y. Li, X.H. Sun, L.P. Wang, Z.X. Zhou, Y.J. Kang, Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54(6), 1829–1837 (2005). doi:10.2337/diabetes.54.6.1829

    Article  PubMed  CAS  Google Scholar 

  39. I.V. Turko, L. Li, K.S. Aulak, D.J. Stuehr, J.Y. Chang, F. Murad, Protein tyrosine nitration in the mitochondria from diabetic mouse heart—implications to dysfunctional mitochondria in diabetes. J. Biol. Chem. 278(36), 33972–33977 (2003). doi:10.1074/jbc.M303734200

    Article  PubMed  CAS  Google Scholar 

  40. G. Ye, N.S. Metreveli, J. Ren, P.N. Epstein, Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52(3), 777–783 (2003). doi:10.2337/diabetes.52.3.777

    Article  PubMed  CAS  Google Scholar 

  41. A.I. Andreyev, Y.E. Kushnareva, A.A. Starkov, Mitochondrial metabolism of reactive oxygen species. Biochem. Moscow 70(2), 200–214 (2005). doi:10.1007/s10541-005-0102-7

    Article  CAS  Google Scholar 

  42. S. Boudina, S. Sena, H. Theobald, X.M. Sheng, J.J. Wright, X.X. Hu, S. Aziz, J.I. Johnson, H. Bugger, V.G. Zaha, E.D. Abel, Mitochondrial energetics in the heart in obesity-related diabetes—direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56(10), 2457–2466 (2007). doi:10.2337/db07-0481

    Article  PubMed  CAS  Google Scholar 

  43. X. Shen, S.R. Zheng, N.S. Metreveli, P.N. Epstein, Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3), 798–805 (2006). doi:10.2337/diabetes.55.03.06.db05-1039

    Article  PubMed  CAS  Google Scholar 

  44. D.T. Johnson, R.A. Harris, S. French, A. Aponte, R.S. Balaban, Proteomic changes associated with diabetes in the BB-DP rat. Am. J. Physiol. Endocrinol. Metab. 296(3), E422–E432 (2009). doi:10.1152/ajpendo.90352.2008

    Article  PubMed  CAS  Google Scholar 

  45. M.T. Coughlan, D.R. Thorburn, S.A. Penfold, A. Laskowski, B.E. Harcourt, K.C. Sourris, A.L.Y. Tan, K. Fukami, V. Thallas-Bonke, P.P. Nawroth, M. Brownlee, A. Bierhaus, M.E. Cooper, J.M. Forbes, RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J. Am. Soc. Nephrol. 20(4), 742–752 (2009). doi:10.1681/asn.2008050514

    Article  PubMed  CAS  Google Scholar 

  46. L.N. Li, G. Renier, Activation of nicotinamide adenine dinucleotide phosphate (reduced form) oxidase by advanced glycation end products links oxidative stress to altered retinal vascular endothelial growth factor expression. Metab. Clin. Exp. 55(11), 1516–1523 (2006). doi:10.1016/j.metabol.2006.06.022

    Article  PubMed  CAS  Google Scholar 

  47. J.S. Kim, Y.G. Jin, J.J. Lemasters, Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am. J. Physiol. Heart Circul. Physiol. 290(5), H2024–H2034 (2006). doi:10.1152/ajpheart.00683.2005

    Article  CAS  Google Scholar 

  48. G.S. Bhamra, D.J. Hausenloy, S.M. Davidson, R.D. Carr, M. Paiva, A.M. Wynne, M.M. Mocanu, D.M. Yellon, Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res. Cardiol. 103(3), 274–284 (2008). doi:10.1007/s00395-007-0691-y

    Article  PubMed  CAS  Google Scholar 

  49. E.D. Abel, S.E. Litwin, G. Sweeney, Cardiac remodeling in obesity. Physiol. Rev. 88(2), 389–419 (2008). doi:10.1152/physrev.00017.2007

    Article  PubMed  CAS  Google Scholar 

  50. H. Bugger, E.D. Abel, Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin. Sci. 114(3–4), 195–210 (2008). doi:10.1042/cs20070166

    Article  PubMed  CAS  Google Scholar 

  51. E. Akbal, M. Ozbek, F. Gunes, O. Akyurek, K. Ureten, T. Delibasi, Serum heart type fatty acid binding protein levels in metabolic syndrome. Endocrine 36(3), 433–437 (2009). doi:10.1007/s12020-009-9243-6

    Article  PubMed  CAS  Google Scholar 

  52. P. Herrero, L.R. Peterson, J.B. McGill, S. Matthew, D. Lesniak, C. Dence, R.J. Gropler, Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47(3), 598–604 (2006). doi:10.1016/j.jacc.2005.09.030

    Article  PubMed  CAS  Google Scholar 

  53. B.N. Finck, D.P. Kelly, Peroxisome proliferator-activated receptor alpha (PPAR alpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J. Mol. Cell. Cardiol. 34(10), 1249–1257 (2002). doi:10.1006/jmcc.2002.2061

    Article  PubMed  CAS  Google Scholar 

  54. T. Aoyama, J.M. Peters, N. Iritani, T. Nakajima, K. Furihata, T. Hashimoto, F.J. Gonzalez, Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPAR alpha). J. Biol. Chem. 273(10), 5678–5684 (1998). doi:10.1074/jbc.273.10.5678

    Article  PubMed  CAS  Google Scholar 

  55. J.G. Duncan, J.L. Fong, D.M. Medeiros, B.N. Finck, D.P. Kelly, Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1 alpha gene regulatory pathway. Circulation 115(7), 909–917 (2007). doi:10.1161/circulationaha.106.662296

    Article  PubMed  CAS  Google Scholar 

  56. J. Eckel, H. Reinauer, Insulin action on glucose-transport in isolated cardiac myocytes-signaling pathways and diabetes-induced alterations. Biochem. Soc. Trans. 18(6), 1125–1127 (1990)

    PubMed  CAS  Google Scholar 

  57. M.E. Young, P. McNulty, H. Taegtmeyer, Adaptation and maladaptation of the heart in diabetes: part II—potential mechanisms. Circulation 105(15), 1861–1870 (2002). doi:10.1161/01.cir.0000012467.61045.87

    Article  PubMed  CAS  Google Scholar 

  58. O.D. Mjos, Effect on free fatty acids on myocardial function and oxygen consumption in intact dogs. J. Clin. Invest. 50(7), 1386–1389 (1971). doi:10.1172/jci106621

    Article  PubMed  CAS  Google Scholar 

  59. C. Martin, R. Schulz, H. Post, P. Gres, G. Heusch, Effect of NO synthase inhibition on myocardial metabolism during moderate ischemia. Am. J. Physiol. Heart Circul. Physiol. 284(6), H2320–H2324 (2003). doi:10.1152/ajpheart.01122.2002

    CAS  Google Scholar 

  60. J. Buchanan, P.K. Mazumder, P. Hu, G. Chakrabarti, M.W. Roberts, U.J. Yun, R.C. Cooksey, S.E. Litwin, E.D. Abel, Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146(12), 5341–5349 (2005). doi:10.1210/en.2005-0938

    Article  PubMed  CAS  Google Scholar 

  61. L.R. Peterson, P. Herrero, K.B. Schechtman, S.B. Racette, A.D. Waggoner, Z. Kisrieva-Ware, C. Dence, S. Klein, J. Marsala, T. Meyer, R.J. Gropler, Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109(18), 2191–2196 (2004). doi:10.1161/01.cir.0000127959.28627.f8

    Article  PubMed  Google Scholar 

  62. S. Boudina, E.D. Abel, Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology 21, 250–258 (2006). doi:10.1152/physiol.00008.2006

    Article  PubMed  CAS  Google Scholar 

  63. L.K. Russell, C.M. Mansfield, J.J. Lehman, A. Kovacs, M. Courtois, J.E. Saffitz, D.M. Medeiros, M.L. Valencik, J.A. McDonald, D.P. Kelly, Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1 alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ. Res. 94(4), 525–533 (2004). doi:10.1161/01.res.0000117088.36577.eb

    Article  PubMed  CAS  Google Scholar 

  64. T.H. Kuo, K.H. Moore, F. Giacomelli, J. Wiener, Defective oxidative-metabolism of heart-mitochondria from genetically diabetic mice. Diabetes 32(9), 781–787 (1983). doi:10.2337/diabetes.32.9.781

    Article  PubMed  CAS  Google Scholar 

  65. S. Boudina, S. Sena, B.T. O’Neill, P. Tathireddy, M.E. Young, E.D. Abel, Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112(17), 2686–2695 (2005). doi:10.1161/circulationaha.105.554360

    Article  PubMed  Google Scholar 

  66. H. Bugger, D. Chen, C. Riehle, J. Soto, H.A. Theobald, X.X. Hu, B. Ganesan, B.C. Weimer, E.D. Abel, Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic Akita mice. Diabetes 58(9), 1986–1997 (2009). doi:10.2337/db09-0259

    Article  PubMed  CAS  Google Scholar 

  67. Y. Tanaka, N. Konno, K.J. Kako, Mitochondrial dysfunction observed insitu in cardiomyocytes of rats in experimental diabetes. Cardiovasc. Res. 26(4), 409–414 (1992). doi:10.1093/cvr/26.4.409

    Article  PubMed  CAS  Google Scholar 

  68. A. Kanazawa, Y. Nishio, A. Kashiwagi, H. Inagaki, R. Kikkawa, K. Horiike, Reduced activity of mtTFA decreases the transcription in mitochondria isolated from diabetic rat heart. Am. J. Physiol. Endocrinol. Metab. 282(4), E778–E785 (2002). doi:10.1152/ajpendo.00255.2001

    PubMed  CAS  Google Scholar 

  69. I.V. Turko, F. Murad, Quantitative protein profiling in heart mitochondria from diabetic rats. J. Biol. Chem. 278(37), 35844–35849 (2003). doi:10.1074/jbc.M303139200

    Article  PubMed  CAS  Google Scholar 

  70. M. Di Carli, D. Bianco-Batlles, M.E. Landa, A. Kazmers, H. Groehn, O. Muzik, G. Grunberger, Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 100(8), 813–819 (1999)

    PubMed  Google Scholar 

  71. J.K. Kahn, B. Zola, J.E. Juni, A.I. Vinik, Radionuclide assessment of left-ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J. Am. Coll. Cardiol. 7(6), 1303–1309 (1986)

    Article  PubMed  CAS  Google Scholar 

  72. M.R. Movahed, M. Hashemzadeh, M. Jamal, Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessels 22(4), 251–253 (2007). doi:10.1007/s00380-006-0962-9

    Article  PubMed  Google Scholar 

  73. K.E.J. Airaksinen, M.J. Koistinen, M.J. Ikaheimo, H.V. Huikuri, U. Korhonen, H. Pirttiaho, M.K. Linnaluoto, J.T. Takkunen, Augmentation of atrial contribution to left-ventricular filling in IDDM subjects as assessed by Doppler echocardiography. Diabetes Care 12(2), 159–161 (1989). doi:10.2337/diacare.12.2.159

    Article  PubMed  CAS  Google Scholar 

  74. P.T. Monteagudo, V.A. Moises, O. Kohlmann, A.B. Ribeiro, V.C. Lima, M.T. Zanella, Influence of autonomic neuropathy upon left ventricular dysfunction in insulin-dependent diabetic patients. Clin. Cardiol. 23(5), 371–375 (2000)

    Article  PubMed  CAS  Google Scholar 

  75. M. Uusitupa, J. Mustonen, M. Laakso, P. Vainio, E. Lansimies, S. Talwar, K. Pyorala, Impairment of diastolic function in middle-aged type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic-patients free of cardiovascular-disease. Diabetologia 31(11), 783–791 (1988)

    Article  PubMed  CAS  Google Scholar 

  76. J.Y. Park, N. Takahara, A. Gabriele, E. Chou, K. Naruse, K. Suzuma, T. Yamauchi, S.W. Ha, M. Meier, C.J. Rhodes, G.L. King, Induction of endothelin-1 expression by glucose—an effect of protein kinase C activation. Diabetes 49(7), 1239–1248 (2000). doi:10.2337/diabetes.49.7.1239

    Article  PubMed  CAS  Google Scholar 

  77. E. Chou, I. Suzuma, K.J. Way, D. Opland, A.C. Clermont, K. Naruse, K. Suzuma, N.L. Bowling, C.J. Vlahos, L.P. Aiello, G.L. King, Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic states—a possible explanation for impaired collateral formation in cardiac tissue. Circulation 105(3), 373–379 (2002). doi:10.1161/hc0302.102143

    Article  PubMed  CAS  Google Scholar 

  78. K. Shinohara, T. Shinohara, N. Mochizuki, Y. Mochizukik, H. Sawa, T. Kohya, M. Fujita, Y. Fujioka, A. Kitabatake, K. Nagashima, Expression of vascular endothelial growth factor in human myocardial infarction. Heart Vessels 11(3), 113–122 (1996). doi:10.1007/bf01745169

    Article  PubMed  CAS  Google Scholar 

  79. Y.S. Yoon, S. Uchida, O. Masuo, M. Cejna, J.S. Park, H.C. Gwon, R. Kirchmair, F. Bahlman, D. Walter, C. Curry, A. Hanley, J.M. Isner, D.W. Losordo, Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy—restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111(16), 2073–2085 (2005). doi:10.1161/01.cir.0000162472.52990.36

    Article  PubMed  CAS  Google Scholar 

  80. S. Jesmin, S. Zaedi, N. Shimojo, M. Iemitsu, K. Masuzawa, N. Yamaguchi, C.N. Mowa, S. Maeda, Y. Hattori, T. Miyauchi, Endothelin antagonism normalizes VEGF signaling and cardiac function in STZ-induced diabetic rat hearts. Am. J. Physiol. Endocrinol. Metab. 292(4), E1030–E1040 (2007). doi:10.1152/ajpendo.00517.2006

    Article  PubMed  CAS  Google Scholar 

  81. Y. Hattori, H. Kawasaki, K. Abe, M. Kanno, Superoxide-dismutase recovers altered endothelium-dependent relaxation in diabetic rat aorta. Am. J. Physiol. 261(4), H1086–H1094 (1991)

    PubMed  CAS  Google Scholar 

  82. R. Bucala, K.J. Tracey, A. Cerami, Advanced glycosylation products quench nitric-oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J. Clin. Invest. 87(2), 432–438 (1991). doi:10.1172/jci115014

    Article  PubMed  CAS  Google Scholar 

  83. C. Andersson, G.H. Gislason, P. Weeke, S. Hoffmann, P.R. Hansen, C. Torp-Pedersen, P. Sogaard, Diabetes is associated with impaired myocardial performance in patients without significant coronary artery disease. Cardiovasc. Diabetol. 9, 3 (2010). doi:310.1186/1475-2840-9-3

    Article  PubMed  Google Scholar 

  84. J.R. Privratsky, L.E. Wold, J.R. Sowers, M.T. Quinn, J. Ren, AT(1) blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes—role of the AT(1) receptor and NADPH oxidase. Hypertension 42(2), 206–212 (2003). doi:10.1161/01.hyp.0000082814.62655.85

    Article  PubMed  CAS  Google Scholar 

  85. F.S. Fein, E.H. Sonnenblick, Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27(4), 255–270 (1985). doi:10.1016/0033-0620(85)90009-x

    Article  PubMed  CAS  Google Scholar 

  86. F. Fiordaliso, B.S. Li, R. Latini, E.H. Sonnenblick, P. Anversa, A. Leri, J. Kajstura, Myocyte death in streptozotocin-induced diabetes in rats is angiotensin II-dependent. Lab. Invest. 80(4), 513–527 (2000)

    PubMed  CAS  Google Scholar 

  87. C. Ballard, S. Schaffer, Stimulation of the Na+/Ca2+ exchanger by phenylephrine, angiotensin II and endothelin I. J. Mol. Cell. Cardiol. 28(1), 11–17 (1996). doi:10.1006/jmcc.1996.0002

    Article  PubMed  CAS  Google Scholar 

  88. L. Ferron, V. Capuano, Y. Ruchon, E. Deroubaix, A. Coulombe, J.F. Renaud, Angiotensin II signaling pathways mediate expression of cardiac T-type calcium channels. Circ. Res. 93(12), 1241–1248 (2003). doi:10.1161/01.res.0000106134.69300.b7

    Article  PubMed  CAS  Google Scholar 

  89. S. Gunasegaram, R.S. Haworth, D.J. Hearse, M. Avkiran, Regulation of sarcolemmal Na+/H+ exchanger activity by angiotensin II in adult rat ventricular myocytes opposing actions via AT(1) versus AT(2) receptors. Circ. Res. 85(10), 919–930 (1999)

    PubMed  CAS  Google Scholar 

  90. N. Yaras, A. Bilginoglu, G. Vassort, B. Turan, Restoration of diabetes-induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. Am. J. Physiol. Heart Circul. Physiol. 292(2), H912–H920 (2007). doi:10.1152/ajpheart.00824.2006

    Article  CAS  Google Scholar 

  91. X.L. Liu, H. Suzuki, R. Sethi, P.S. Tappia, N. Takeda, N.S. Dhalla, Blockade of the renin-angiotensin system attenuates sarcolemma and sarcoplasmic reticulum remodeling in chronic diabetes, in Diabetes Mellitus and Its Complications: Molecular Mechanisms, Epidemiology, and Clinical Medicine, vol. 1084, ed. by E. Adeghate, H. Saadi, A. Adem, E. Obineche. Annals of the New York Academy of Sciences (Blackwell Publishing, Oxford, 2006), pp. 141–154

  92. J. Kajstura, F. Fiordaliso, A.M. Andreoli, B.S. Li, S. Chimenti, M.S. Medow, F. Limana, B. Nadal-Ginard, A. Leri, P. Anversa, IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 50(6), 1414–1424 (2001). doi:10.2337/diabetes.50.6.1414

    Article  PubMed  CAS  Google Scholar 

  93. A. Leri, Y. Liu, X.W. Wang, J. Kajstura, A. Malhotra, L.G. Meggs, P. Anversa, Overexpression of insulin-like growth factor-1 attenuates the myocyte renin-angiotensin system in transgenic mice. Circ. Res. 84(7), 752–762 (1999)

    PubMed  CAS  Google Scholar 

  94. Z. Yu, G.F. Tibbits, J.H. McNeill, Cellular functions of diabetic cardiomyocytes—contractility, rapid-cooling contracture, and ryanodine binding. Am. J. Physiol. 266(5), H2082–H2089 (1994)

    PubMed  CAS  Google Scholar 

  95. J.Z. Yu, G.A. Quamme, J.H. McNeill, Altered Ca2+(i) mobilization in diabetic cardiomyocytes: responses to caffeine, KCl, ouabain, and ATP. Diabetes Res. Clin. Pract. 30(1), 9–20 (1995). doi:10.1016/0168-8227(95)01144-7

    Article  PubMed  CAS  Google Scholar 

  96. R.A. Bouchard, D. Bose, Influence of experimental diabetes on sarcoplasmic-reticulum function in rat ventricular muscle. Am. J. Physiol. 260(2), H341–H354 (1991)

    PubMed  CAS  Google Scholar 

  97. S. Nobe, M. Aomine, M. Arita, S. Ito, R. Takaki, Chronic diabetes mellitus prolong action-potential duration of rat ventricular muscles—circumstantial evidence for impaired Ca2+ channel. Cardiovasc. Res. 24(5), 381–389 (1990). doi:10.1093/cvr/24.5.381

    Article  PubMed  CAS  Google Scholar 

  98. D.Y. Qin, B.Y. Huang, L.L. Deng, H. El-Adawi, K. Ganguly, J.R. Sowers, N. El-Sherif, Downregulation of K+channel genes expression in type I diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 283(3), 549–553 (2001). doi:10.1006/bbrc.2001.4825

    Article  PubMed  CAS  Google Scholar 

  99. S. Shigematsu, T. Maruyama, T. Kiyosue, M. Arita, Rate-dependent prolongation of action-potential duration in single ventricular myocytes obtained from hearts of rats with streptozotocin-induced chronic diabetes sustained for 30–32 weeks. Heart Vessels 9(6), 300–306 (1994). doi:10.1007/bf01745095

    Article  PubMed  CAS  Google Scholar 

  100. Y. Shimoni, M. Chuang, E.D. Abel, D.L. Severson, Gender-dependent attenuation of cardiac potassium currents in type 2 diabetic db/db mice. J. Physiol. London 555(2), 345–354 (2004). doi:10.1113/jphysiol.2003.055590

    Article  PubMed  CAS  Google Scholar 

  101. Y.F. Ding, R.J. Zou, R.L. Judd, J.M. Zhong, Effects of gender difference on cardiac myocyte dysfunction in streptozotocin-induced diabetic rats. Endocrine 29(1), 135–141 (2006). doi:10.1385/endo:29:1:135

    Article  PubMed  CAS  Google Scholar 

  102. J.Z. Yu, B. Rodrigues, J.H. McNeill, Intracellular calcium levels are unchanged in the diabetic heart. Cardiovasc. Res. 34(1), 91–98 (1997). doi:10.1016/s0008-6363(97)00034-5

    Article  PubMed  CAS  Google Scholar 

  103. J. Ren, A.F. Ceylan-Isik, Diabetic cardiomyopathy—do women differ from men? Endocrine 25(2), 73–83 (2004). doi:10.1385/endo:25:2:073

    Article  PubMed  CAS  Google Scholar 

  104. Y. Shimoni, H.S. Ewart, D. Severson, Insulin stimulation of rat ventricular K(+) currents depends on the integrity of the cytoskeleton. J. Physiol. London 514(3), 735–745 (1999). doi:10.1111/j.1469-7793.1999.735ad.x

    Article  PubMed  CAS  Google Scholar 

  105. X. Li, Z. Xu, S.M. Li, G.J. Rozanski, Redox regulation of I to remodeling in diabetic rat heart. Am. J. Physiol. Heart Circul. Physiol. 288(3), H1417–H1424 (2005). doi:10.1152/ajpheart.0059.2004

    Article  CAS  Google Scholar 

  106. W.B. Kannel, M. Hjortlan, W.P. Castelli, Role of diabetes in congestive heart failure—Framingham study. Am. J. Cardiol. 34(1), 29–34 (1974). doi:10.1016/0002-9149(74)90089-7

    Article  PubMed  CAS  Google Scholar 

  107. W.B. Kannel, D.L. McGee, Diabetes and cardiovascular-disease—Framingham study. JAMA 241(19), 2035–2038 (1979). doi:10.1001/jama.241.19.2035

    Article  PubMed  CAS  Google Scholar 

  108. J.N. Bella, R.B. Devereux, M.J. Roman, V. Palmieri, J.E. Liu, M. Paranicas, T.K. Welty, E.T. Lee, R.R. Fabsitz, B.V. Howard, Strong Heart Study Investigators, Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am. J. Cardiol. 87(11), 1260–1265 (2001). doi:10.1016/s0002-9149(01)01516-8

    Article  PubMed  CAS  Google Scholar 

  109. A. Ilercil, R.B. Devereux, M.J. Roman, M. Paranicas, M.J. O’Grady, T.K. Welty, D.C. Robbins, R.R. Fabsitz, B.V. Howard, E.T. Lee, Relationship of impaired glucose tolerance to left ventricular structure and function: the strong heart study. Am. Heart J. 141(6), 992–998 (2001). doi:10.1067/mhj.2001.115302

    Article  PubMed  CAS  Google Scholar 

  110. A.D. Struthers, A.D. Morris, Screening for and treating left-ventricular abnormalities in diabetes mellitus: a new way of reducing cardiac deaths. Lancet 359(9315), 1430–1432 (2002). doi:10.1016/s0140-6736(02)08358-7

    Article  PubMed  Google Scholar 

  111. Y.H. Chen, Y. Huang, X.Y. Li, M. Xu, Y.F. Bi, Y. Zhang, W.Q. Gu, G. Ning, Association of arterial stiffness with HbA1c in 1,000 type 2 diabetic patients with or without hypertension. Endocrine 36(2), 262–267 (2009). doi:10.1007/s12020-009-9221-z

    Article  PubMed  CAS  Google Scholar 

  112. D.S.H. Bell, Diabetic cardiomyopathy. Diabetes Care 26(10), 2949–2951 (2003). doi:10.2337/diacare.26.10.2949

    Article  PubMed  Google Scholar 

  113. C.M. Schannwell, M. Schneppenheim, S. Perings, G. Plehn, B.E. Strauer, Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98(1–2), 33–39 (2002). doi:10.1159/000064682

    Article  PubMed  CAS  Google Scholar 

  114. S. Carugo, C. Giannattasio, I. Calchera, F. Paleari, M.G. Gorgoglione, A. Grappiolo, P. Gamba, G. Rovaris, M. Failla, G. Mancia, Progression of functional and structural cardiac alterations in young normotensive uncomplicated patients with type 1 diabetes mellitus. J. Hypertens. 19(9), 1675–1680 (2001). doi:10.1097/00004872-200109000-00021

    Article  PubMed  CAS  Google Scholar 

  115. T. Beljic, M. Miric, Improved metabolic control does not reverse left-ventricular filling abnormalities in newly diagnosed non-insulin-dependent diabetes patients. Acta Diabetol. 31(3), 147–150 (1994)

    Article  PubMed  CAS  Google Scholar 

  116. A. Nicolino, G. Longobardi, G. Furgi, M. Rossi, N. Zoccolillo, N. Ferrara, F. Rengo, Left-ventricular diastolic filling in diabetes mellitus with and without hypertension. Am. J. Hypertens. 8(4), 382–389 (1995). doi:10.1016/0895-7061(95)00022-h

    Article  PubMed  CAS  Google Scholar 

  117. P. Poirier, P. Bogaty, C. Garneau, L. Marois, J.G. Dumesnil, Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes—importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24(1), 5–10 (2001). doi:10.2337/diacare.24.1.5

    Article  PubMed  CAS  Google Scholar 

  118. B. Shivalkar, D. Dhondt, I. Goovaerts, L. Van Gaal, J. Bartunek, P. Van Crombrugge, C. Vrints, Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am. J. Cardiol. 97(1), 77–82 (2006). doi:10.1016/j.amjcard.2005.07.111

    Article  PubMed  Google Scholar 

  119. S.S. Ahmed, G.A. Jaferi, R.M. Narang, T.J. Regan, Preclinical abnormality of left-ventricular function in diabetes mellitus. Am. Heart J. 89(2), 153–158 (1975). doi:10.1016/0002-8703(75)90039-3

    Article  PubMed  CAS  Google Scholar 

  120. T.R. Kimball, S.R. Daniels, P.R. Khoury, R.A. Magnotti, A.M. Turner, L.M. Dolan, Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 90(1), 357–361 (1994)

    PubMed  CAS  Google Scholar 

  121. R.B. Devereux, M.J. Roman, M. Paranicas, M.J. O’Grady, E.T. Lee, T.K. Welty, R.R. Fabsitz, D. Robbins, E.R. Rhoades, B.V. Howard, Impact of diabetes on cardiac structure and function—the strong heart study. Circulation 101(19), 2271–2276 (2000)

    PubMed  CAS  Google Scholar 

  122. M. Eren, S. Gorgulu, N. Uslu, S. Celik, B. Dagdeviren, T. Tezel, Relation between aortic stiffness and left ventricular diastolic function in patients with hypertension, diabetes, or both. Heart 90(1), 37–43 (2004). doi:10.1136/heart.90.1.37

    Article  PubMed  CAS  Google Scholar 

  123. Z.Y. Fang, O. Najos-Valencia, R. Leano, T.H. Marwick, Patients with early diabetic heart disease demonstrate a normal myocardial response to dobutamine. J. Am. Coll. Cardiol. 42(3), 446–453 (2003). doi:10.1016/s0735-1097(03)00654-5

    Article  PubMed  CAS  Google Scholar 

  124. Z.Y. Fang, R. Leano, T.H. Marwick, Relationship between longitudinal and radial contractility in subclinical diabetic heart disease. Clin. Sci. 106(1), 53–60 (2004). doi:10.1042/cs20030153

    Article  PubMed  Google Scholar 

  125. L. Jiang, R.A. Levine, A.E. Weyman, Echocardiographic assessment of right ventricular volume and function. Echocardiogr J Cardiovasc Ultrasound Allied Tech 14(2), 189–205 (1997). doi:10.1111/j.1540-8175.1997.tb00711.x

    Google Scholar 

  126. P. Sogaard, H. Egeblad, A.K. Pedersen, W.Y. Kim, B.O. Kristensen, P.S. Hansen, P.T. Mortensen, Sequential versus simultaneous biventricular resynchronization for severe heart failure—evaluation by tissue Doppler imaging. Circulation 106(16), 2078–2084 (2002). doi:10.1161/01.cir.0000034512.90874.8e

    Article  PubMed  Google Scholar 

  127. J. Ren, W.K. Samson, J.R. Sowers, Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J. Mol. Cell. Cardiol. 31(11), 2049–2061 (1999). doi:10.1006/jmcc.1999.1036

    Article  PubMed  CAS  Google Scholar 

  128. F.L. Norby, L.E. Wold, J.H. Duan, K.K. Hintz, J. Ren, IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am. J. Physiol. Endocrinol. Metab. 283(4), E658–E666 (2002). doi:10.1152/ajpendo.00003.2002

    PubMed  CAS  Google Scholar 

  129. E. Adeghate, Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: a short review. Mol. Cell. Biochem. 261(1–2), 187–191 (2004). doi:10.1023/b:mcbi.0000028755.86521.11

    Article  PubMed  CAS  Google Scholar 

  130. A.I.M. Al-Shafei, R.G. Wise, G.A. Gresham, G. Bronns, T.A. Carpenter, L.D. Hall, C.L.H. Huang, Non-invasive magnetic resonance imaging assessment of myocardial changes and the effects of angiotensin-converting enzyme inhibition in diabetic rats. J. Physiol. London 538(2), 541–553 (2002). doi:10.1013/jphysiol.2001.012856

    Article  PubMed  CAS  Google Scholar 

  131. T. Sugawara, S. Fujii, T.A. Zaman, D. Goto, T. Kaneko, T. Furumoto, H. Togashi, M. Yoshioka, T. Koyama, A. Kitabatake, Coronary capillary remodeling in non-insulin-dependent diabetic rats: amelioration by inhibition of angiotensin converting enzyme and its potential clinical implications. Hypertens. Res. 24(1), 75–81 (2001). doi:10.1291/hypres.24.75

    Article  PubMed  CAS  Google Scholar 

  132. G. Miric, C. Dallemagne, Z. Endre, S. Margolin, S.M. Taylor, L. Brown, Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br. J. Pharmacol. 133(5), 687–694 (2001). doi:10.1038/sj.bjp.0704131

    Article  PubMed  CAS  Google Scholar 

  133. D. Grimm, H.C. Jabusch, P. Kossmehl, M. Huber, S. Fredersdorf, D.P. Griese, B.K. Kramer, E.P. Kromer, Experimental diabetes and left ventricular hypertrophy—effects of beta-receptor blockade. Cardiovasc. Pathol. 11(4), 229–237 (2002). doi:10.1016/s1054-8807(01)00116-8

    Article  PubMed  CAS  Google Scholar 

  134. A. Bril, M. Slivjak, M.J. Dimartino, G.Z. Feuerstein, P. Linee, R.H. Poyser, R.R. Ruffolo, E.F. Smith, Cardioprotective effects of carvedilol, a novel beta-adrenoceptor antagonist with vasodilating properties, in anesthetized minipigs—comparison with propranolol. Cardiovasc. Res. 26(5), 518–525 (1992). doi:10.1093/cvr/26.5.518

    Article  PubMed  CAS  Google Scholar 

  135. M. Packer, A.J.S. Coats, M.B. Fowler, H.A. Katus, H. Krum, P. Mohacsi, J.L. Rouleau, M. Tendera, A. Castaigne, E.B. Roecker, M.K. Schultz, D.L. DeMets, Effect of carvedilol on survival in severe chronic heart failure. N. Engl. J. Med. 344(22), 1651–1658 (2001). doi:10.1056/nejm200105313442201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in Professor Chen’s Lab discussed in this review has been supported by Australian NHMRC and Dept of Innovation, Industry, Science and Research, Commonwealth of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Chen, C. A new insight of mechanisms, diagnosis and treatment of diabetic cardiomyopathy. Endocrine 41, 398–409 (2012). https://doi.org/10.1007/s12020-012-9623-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9623-1

Keywords

Navigation