Skip to main content

Advertisement

Log in

Safflower Yellow Improves Synaptic Plasticity in APP/PS1 Mice by Regulating Microglia Activation Phenotypes and BDNF/TrkB/ERK Signaling Pathway

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a common neurodegenerative disease that is always accompanied by synaptic loss in the brain. Safflower yellow (SY) is the extract of safflower, a traditional Chinese medicine, which has shown neuroprotective effects in recent studies. However, the mechanism of SY in protecting synapses remains unclear. In this study, we are going to study the mechanism of how SY treats AD in terms of synaptic plasticity. We found, via behavioral experiments, that SY treatment could improve the abilities of learning and memory in APP/PS1 mice. In addition, using Golgi staining and HE staining, we found that SY treatment could reduce the loss of dendritic spines in the pathological condition and could maintain the normal physiological state of the cells in cortex and in hippocampus. In addition, the results of immunofluorescence staining and western blotting showed that SY treatment could significantly increase the expression of synapse-related proteins. Moreover, after being treated with SY, the expression of iNOS (marker of M1 microglia) declined remarkably, and the level of Arginase-1 (marker of M2 microglia) increased significantly. Finally, we found BDNF/TrkB/ERK signaling cascade was activated. These results indicate that SY enhances synaptic plasticity in APP/PS1 mice by regulating microglia activation phenotypes and BDNF/TrkB/ERK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bailey, C. H., & Kandel, E. R. (1993). Structural changes accompanying memory storage. The Annual Review of Physiology, 55, 397–426.

    CAS  PubMed  Google Scholar 

  • Bharne, A. P., Borkar, C. D., Bodakuntla, S., Lahiri, M., Subhedar, N. K., & Kokare, D. M. (2016). Pro-cognitive action of CART is mediated via ERK in the hippocampus. Hippocampus, 26(10), 1313–1327.

    CAS  PubMed  Google Scholar 

  • Bloom, G. S. (2014). Amyloid-β and Tau. JAMA Neurology, 71(4), 505–508.

    PubMed  Google Scholar 

  • Chakroborty, S., Kim, J., Schneider, C., West, A. R., & Stutzmann, G. E. (2015). Nitric oxide signaling is recruited as a compensatory mechanism for sustaining synaptic plasticity in Alzheimer's disease mice. Journal of Neuroscience, 35(17), 6893–6902.

    CAS  PubMed  Google Scholar 

  • Cherry, J. D., Olschowka, J. A., & O'Banion, M. K. (2014). Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. Journal of Neuroinflammation, 11(1), 98.

    PubMed  PubMed Central  Google Scholar 

  • Chong, Y. H., Shin, Y. J., Lee, E. O., Kayed, R., Glabe, C. G., & Tenner, A. J. (2006). ERK1/2 activation mediates abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. Journal of Biological Chemistry, 281(29), 20315–20325.

    CAS  PubMed  Google Scholar 

  • Cotman, C. W., & Berchtold, N. C. (2002). Exercise: A behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25(6), 295–301.

    CAS  PubMed  Google Scholar 

  • Devi, L., & Ohno, M. (2012). 7,8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer's disease. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 37(2), 434–444.

    CAS  PubMed  Google Scholar 

  • El-Husseini, E. D., Schnell, E., Chetkovich, D. M., Nicoll, R. A., & Bredt, D. S. (2000). PSD-95 Involvement in maturation of excitatory synapses. Science, 290(5495), 1364–1368.

    CAS  PubMed  Google Scholar 

  • Gallagher, J. J., Minogue, A. M., & Lynch, M. A. (2013). Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neuro-degenerative Diseases, 11(1), 33–41.

    CAS  PubMed  Google Scholar 

  • Giachello, C. N., Fiumara, F., Giacomini, C., Corradi, A., Milanese, C., Ghirardi, M., et al. (2010). MAPK/Erk-dependent phosphorylation of synapsin mediates formation of functional synapses and short-term homosynaptic plasticity. Journal of Cell Science, 123(Pt 6), 881–893.

    CAS  PubMed  Google Scholar 

  • Gylys, K. H., Fein, J. A., Yang, F., Wiley, D. J., Miller, C. A., & Cole, G. M. (2004). Synaptic changes in Alzheimer's disease: Increased amyloid-beta and gliosis in surviving terminals is accompanied by decreased PSD-95 fluorescence. American Journal of Pathology, 165(5), 1809–1817.

    CAS  PubMed  Google Scholar 

  • Hayashi, M. K., Tang, C., Verpelli, C., Narayanan, R., Stearns, M. H., Xu, R. M., et al. (2009). The postsynaptic density proteins Homer and Shank form a polymeric network structure. Cell, 137(1), 159–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, S., Bejaglasser, V. F., Nfonoyim, B. M., Frouin, A., Li, S., Ramakrishnan, S., et al. (2016). Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 352(6286), 712–716.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, D., Lu, Y., Luo, X., Shi, L., Zhang, J., Shen, J., et al. (2012). Effect of safflower yellow on platelet activating factor mediated platelet activation in patients with coronary heart disease. Bangladesh Journal of Pharmacology, 7(2), 140–144.

    Google Scholar 

  • Jansone, B., Kadish, I., Van, G. T., Beitnere, U., Plotniece, A., Pajuste, K., et al. (2016). Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in Alzheimer's disease transgenic female mice. Pharmacological Research, 113(Pt B), 781–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf, S. J., Metaxas, A., Ibáñezvea, M., Darvesh, S., Finsen, B., & Larsen, M. R. (2016). An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer's mouse model. Oncotarget, 7(23), 33627–33648.

    PubMed  PubMed Central  Google Scholar 

  • Knobloch, M., & Mansuy, I. M. (2008). Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Molecular Neurobiology, 37(1), 73–82.

    CAS  PubMed  Google Scholar 

  • Kwon, S. E., & Chapman, E. R. (2011). Synaptophysin regulates the kinetics of synaptic vesicle endocytosis in central neurons. Neuron, 70(5), 847–854.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanté, F., Chafai, M., Raymond, E. F., Salgueiro Pereira, A. R., Mouska, X., Kootar, S., et al. (2015). Subchronic glucocorticoid receptor inhibition rescues early episodic memory and synaptic plasticity deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology, 40(7), 1772–1781.

    PubMed  PubMed Central  Google Scholar 

  • Lu, Z., Yu, F., Xu, Y., Lian, Y., Xie, N., Wu, T., et al. (2015). Curcumin improves amyloid β-peptide (1–42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE, 10(6), e0131525.

    Google Scholar 

  • Madison, D. V., Malenka, R. C., & Nicoll, R. A. (1991). Mechanisms underlying long-term potentiation of synaptic transmission. Annual Review of Neuroscience, 14(14), 379–397.

    CAS  PubMed  Google Scholar 

  • Malinow, R. (1994). LTP: desperately seeking resolution. Science, 266(5188), 1195–1196.

    CAS  PubMed  Google Scholar 

  • Marguerite, P., Richard, D., Ehren, J. L., Chandramouli, C., & David, S. (2013). The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice. Alzheimers Research & Therapy, 5(3), 25.

    Google Scholar 

  • Mosher, K. I., & Wysscoray, T. (2014). Microglial dysfunction in brain aging and Alzheimer's disease. Biochemical Pharmacology, 88(4), 594–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Q., Ruan, Y-Y., Xu, H., Shi, X-M., Wang, Z-X., Hu, Y-L., et al. (2015). Safflower yellow reduces lipid peroxidation, neuropathology, tau phosphorylation and ameliorates amyloid β-induced impairment of learning and memory in rats. Biomedicine & Pharmacotherapy, 76, 153–164.

    CAS  Google Scholar 

  • Nikonenko, I., Boda, B., Steen, S., Knott, G., Welker, E., & Muller, D. (2008). PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. Journal of Cell Biology, 183(6), 1115–1127.

    CAS  PubMed  Google Scholar 

  • Nowack, A., Yao, J., Custer, K. L., & Bajjalieh, S. M. (2010). SV2 regulates neurotransmitter release via multiple mechanisms. American Journal of Physiology Cell Physiology, 299(5), C960–967.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Dell, T. J., Kandel, E. R., & Grant, S. G. N. (1991). Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature, 353(6344), 558–560.

    CAS  PubMed  Google Scholar 

  • Patterson, S. L. (2015a). Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β BDNF and synaptic plasticity. Neuropharmacology, 96(Pt A), 11–18.

    CAS  PubMed  Google Scholar 

  • Patterson, S. L. (2015b). Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity. Neuropharmacology, 96, 11–18.

    CAS  PubMed  Google Scholar 

  • Pyeon, H. J., & Lee, Y. I. (2012). Differential expression levels of synaptophysin through developmental stages in hippocampal region of mouse brain. Anatomy & Cell Biology, 45(2), 97–102.

    Google Scholar 

  • Roghani, Z. M. T. B. M. (2017). The beneficial effects of riluzole on GFAP and iNOS expression in intrahippocampal Aβ rat model of Alzheimer's disease. Journal of Basic & Clinical Pathophysiology, 5(1), 33–38.

    Google Scholar 

  • Ruan, Y-Y., Zhai, W., Shi, X-M., Zhang, L., & Hu, Y-L., et al. (2016). Safflower yellow ameliorates cognition deficits and reduces tau phosphorylation in APP/PS1 transgenic mice. Metabolic Brain Disease, 31(5), 1133–1142.

    PubMed  Google Scholar 

  • Sánchez Gil, J. (2016). Role of the SV2A protein in epilepsy and Alzheimer's mouse models. PLoS ONE, 14(6), e0217882.

    Google Scholar 

  • Sandovalhernández, A. G., Hernández, H. G., Restrepo, A., Muñoz, J. I., Bayon, G. F., Fernández, A. F., et al. (2016). Liver X receptor agonist modifies the DNA methylation profile of synapse and neurogenesis-related genes in the triple transgenic mouse model of Alzheimer's disease. Journal of Molecular Neuroscience, 58(2), 243–253.

    Google Scholar 

  • Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D., & Swank, M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist, 8(2), 122–131.

    CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer's disease is a synaptic failure. Science, 298(5594), 789–791.

    CAS  PubMed  Google Scholar 

  • Shao, C. Y., Mirra, S. S., Sait, H. B. R., Sacktor, T. C., & Sigurdsson, E. M. (2011). Postsynaptic degeneration as revealed by PSD-95 reduction occurs after advanced Aβ and tau pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathologica, 122(3), 285–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, X.-M., Zhang, H., Zhou, Z.-J., Ruan, Y.-Y., Pang, J., Zhang, L., et al. (2017). Effects of safflower yellow on beta-amyloid deposition and activation of astrocytes in the brain of APP/PS1 transgenic mice. Biomedecine & Pharmacotherapie, 98, 553–565.

    Google Scholar 

  • Smith, J. A., Das, A., Ray, S. K., & Banik, N. L. (2012). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Research Bulletin, 87(1), 10–20.

    CAS  PubMed  Google Scholar 

  • Sominsky, L., De Luca, S., & Spencer, S. J. (2018). Microglia: Key players in neurodevelopment and neuronal plasticity. The International Journal of Biochemistry & Cell Biology, 94, 56–60.

    CAS  Google Scholar 

  • Stancu, I. C., Vasconcelos, B., Terwel, D., & Dewachter, I. (2014). Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Molecular Neurodegeneration, 9(1), 51.

    PubMed  PubMed Central  Google Scholar 

  • Steiner, P., Higley, M. J., Xu, W., Czervionke, B. L., Malenka, R. C., & Sabatini, B. L. (2008). Destabilization of the postsynaptic density by PSD-95 serine 73 phosphorylation inhibits spine growth and synaptic plasticity. Neuron, 60(5), 788–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Bronk, P., Liu, X., Han, W., & Südhof, T. C. (2006). Synapsins regulate use-dependent synaptic plasticity in the calyx of held by a Ca2+/calmodulin-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2880–2885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton, M. A., & Schuman, E. M. (2006). Dendritic protein synthesis, synaptic plasticity, and memory. Cell, 127(1), 49–58.

    CAS  PubMed  Google Scholar 

  • Sweatt, J. D. (2001). The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 76(1), 1–10.

    CAS  PubMed  Google Scholar 

  • Tang, Y., & Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology, 53(2), 1181–1194.

    CAS  PubMed  Google Scholar 

  • Terry, R. D., Eliezer Masliah, M. D., Salmon, D. P., Butters, N., Richard DeTeresa, B. S., Hill, R., et al. (1991). Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment. Annals of Neurology, 30(4), 572–580.

    CAS  PubMed  Google Scholar 

  • Thangavel, R., Kempuraj, D., Zaheer, S., Raikwar, S., Ahmed, M. E., Iyer, S. S., et al. (2017). Glia Maturation factor and mitochondrial uncoupling proteins 2 and 4 expression in the temporal cortex of Alzheimer’s disease brain. Frontiers in Aging Neuroscience, 9, 150.

    PubMed  PubMed Central  Google Scholar 

  • Tundis, R., Loizzo, M. R., Menichini, F., Statti, G. A., & Menichini, F. (2008). Biological and pharmacological activities of iridoids: recent developments. Mini Reviews in Medicinal Chemistry, 8(4), 399–420.

    CAS  PubMed  Google Scholar 

  • Vanguilder, H. D., Farley, J. A., Yan, H., Van Kirk, C. A., Mitschelen, M., Sonntag, W. E., et al. (2011). Hippocampal dysregulation of synaptic plasticity-associated proteins with age-related cognitive decline. Neurobiology of Disease, 43(1), 201–212.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse, E. G., & Xu, B. (2009). New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Molecular & Cellular Neurosciences, 42(2), 81–89.

    CAS  Google Scholar 

  • Wu, Y., Dissing-Olesen, L., Macvicar, B. A., & Stevens, B. (2015). Microglia: Dynamic mediators of synapse development and plasticity. Trends in Immunology, 36(10), 605–613.

    PubMed  PubMed Central  Google Scholar 

  • Yang, T., Li, S., Xu, H., Walsh, D. M., & Selkoe, D. J. (2017). Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. The Journal of Neuroscience, 37(1), 152–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, J., Nowack, A., Kensel-Hammes, P., Gardner, R. G., & Bajjalieh, S. M. (2010). Cotrafficking of SV2 and synaptotagmin at the synapse. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 30(16), 5569–5578.

    CAS  Google Scholar 

  • Zhang, Z., Liu, X., Schroeder, J. P., Chan, C. B., Song, M., Yu, S. P., et al. (2014). 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology Official Publication of the American College of Neuropsychopharmacology, 39(3), 638–650.

    PubMed  Google Scholar 

  • Zhang, F., Zhong, R., Li, S., Fu, Z., Cheng, C., Cai, H., et al. (2017). Acute hypoxia induced an imbalanced M1/M2 activation of microglia through NF-κB signaling in Alzheimer's disease mice and wild-type littermates. Frontiers in Aging Neuroscience, 9, 282.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Zhou, Z., Zhai, W., Pang, J., Mo, Y., Yang, G., et al. (2019). Safflower yellow attenuates learning and memory deficits in amyloid β-induced Alzheimer’s disease rats by inhibiting neuroglia cell activation and inflammatory signaling pathways. Metabolic Brain Disease, 34, 927–939.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to American Journal Experts for providing language help in this article (Certificate Verification Key: 2840-1165-087E-4316-0A08).

Funding

This research was supported by the National Natural Science Foundation of China [Nos. 81660603 and 81960665].

Author information

Authors and Affiliations

Authors

Contributions

JP and YH conceived and designed research. JP and JH conducted experiments. ZZ, MR, YM and JH analyzed data. JH wrote the manuscript; GY, ZQ and YH revised the manuscript. All authors read and approved the manuscript for publication.

Corresponding author

Correspondence to Yanli Hu.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interest.

Ethical Approval

All applicable international and national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, J., Hou, J., Zhou, Z. et al. Safflower Yellow Improves Synaptic Plasticity in APP/PS1 Mice by Regulating Microglia Activation Phenotypes and BDNF/TrkB/ERK Signaling Pathway. Neuromol Med 22, 341–358 (2020). https://doi.org/10.1007/s12017-020-08591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-020-08591-6

Keywords

Navigation