Skip to main content

Advertisement

Log in

Temporal and Spatial Expression of Cyclin H in Rat Spinal Cord Injury

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cyclin H regulates cell cycle transitions; it always forms trimeric cyclin-dependent protein kinases (CDK)-activating kinase (CAK) complex with CDK7 and MAT1 that phosphorylates a threonine residue in the CDK2 T loop region. However, neither the expression nor function of cyclin H in the central nervous system (CNS) injury is still clear. Therefore, we studied cyclin H in a rat spinal cord contusion model. Injury markedly increased cyclin H protein expression throughout the thoracic spinal cord but did not increase CDK7. However, double immunofluorescent staining for proliferating cell nuclear antigen (PCNA) and cell markers revealed increases of cyclin H and CDK2 in proliferating microglia and astrocytes, and the co-immunoprecipitation studies shown that the associations of cyclin H with CDK2 were enhanced evidently after injury. Our data suggest that cyclin H may play a proliferative role in spinal cord injury (SCI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CAK:

CDK-activating kinase

CDKs:

Cyclin-dependent protein kinases

CNS:

Central nervous system

DAB:

Diaminobenzidin

ECL:

Enhanced chemiluminescence system

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

PAGE:

Polyacrylamide gel electrophoresis

PCNA:

Proliferating cell nuclear antigen

SCI:

Spinal cord injury

References

  • Andersen, G., Busso, D., Poterszman, A., Hwang, J. R., Wurtz, J. M., Ripp, R., et al. (1997). The structure of cyclin H: Common mode of kinase activation and specific features. EMBO Journal, 16, 958–967.

    Article  PubMed  CAS  Google Scholar 

  • Brown, N. R., Noble, M. E., Endicott, J. A., & Johnson, L. N. (1999). The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nature Cell Biology, 1, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Dahmus, M. E. (1996). Reversible phosphorylation of the C-terminal domain of RNA polymerase II. Journal of Biological Chemistry, 271, 19009–19012.

    PubMed  CAS  Google Scholar 

  • Devault, A., Martinez, A. M., Fesquet, D., Labbe, J. C., Morin, N., Tassan, J. P., et al. (1995). MAT1 (‘menage a trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO Journal, 14, 5027–5036.

    PubMed  CAS  Google Scholar 

  • Dulic, V., Lees, E., & Reed, S. I. (1992). Association of human cyclin E with a periodic G1-S phase protein kinase. Science, 257, 1958–1961.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., et al. (2001). Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clinical Neuropharmacology, 24, 254–264.

    Article  PubMed  CAS  Google Scholar 

  • Elledge, S. J., Richman, R., Hall, F. L., Williams, R. T., Lodgson, N., & Harper, J. W. (1992). CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 89, 2907–2911.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R. P., & Morgan, D. O. (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell, 78, 713–724.

    Article  PubMed  CAS  Google Scholar 

  • Gruner, J. A. (1992). A monitored contusion model of spinal cord injury in the rat. Journal of Neurotrauma, 9, 123–126; discussion 126–128

    Google Scholar 

  • Harper, J. W., & Elledge, S. J. (1998). The role of Cdk7 in CAK function, a retro-retrospective. Genes and Development, 12, 285–289.

    Article  PubMed  CAS  Google Scholar 

  • Jin, K., Nagayama, T., Chen, J., Stetler, A. R., Kawaguchi, K., Simon, R. P., et al. (1999). Molecular cloning of a cell cycle regulation gene cyclin H from ischemic rat brain: Expression in neurons after global cerebral ischemia. Journal of Neurochemistry, 73, 1598–1608.

    Article  PubMed  CAS  Google Scholar 

  • Kaldis, P. (1999). The cdk-activating kinase (CAK): From yeast to mammals. Cellular and Molecular Life Sciences, 55, 284–296.

    Article  PubMed  CAS  Google Scholar 

  • King, R. W., Deshaies, R. J., Peters, J. M., & Kirschner, M. W. (1996). How proteolysis drives the cell cycle. Science, 274, 1652–1659.

    Article  PubMed  CAS  Google Scholar 

  • Labbe, J. C., Martinez, A. M., Fesquet, D., Capony, J. P., Darbon, J. M., Derancourt, J., et al. (1994). p40MO15 associates with a p36 subunit and requires both nuclear translocation and Thr176 phosphorylation to generate cdk-activating kinase activity in Xenopus oocytes. EMBO Journal, 13, 5155–5164.

    PubMed  CAS  Google Scholar 

  • Lee, M. H., Reynisdottir, I., & Massague, J. (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes and Development, 9, 639–649.

    Article  PubMed  CAS  Google Scholar 

  • Makela, T. P., Tassan, J. P., Nigg, E. A., Frutiger, S., Hughes, G. J., & Weinberg, R. A. (1994). A cyclin associated with the CDK-activating kinase MO15. Nature, 371, 254–257.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. O. (1995). Principles of CDK regulation. Nature, 374, 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. O. (1996). The dynamics of cyclin dependent kinase structure. Current Opinion in Cell Biology, 8, 767–772.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. O. (1997). Cyclin-dependent kinases: Engines, clocks, and microprocessors. Annual Review of Cell and Developmental Biology, 13, 261–291.

    Article  PubMed  CAS  Google Scholar 

  • Morris, G. F., & Mathews, M. B. (1989). Regulation of proliferating cell nuclear antigen during the cell cycle. Journal of Biological Chemistry, 264, 13856–13864.

    PubMed  CAS  Google Scholar 

  • Pines, J. (1993). Cyclins and cyclin-dependent kinases: Take your partners. Trends in Biochemical Sciences, 18, 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Pines, J. (1995). Cyclins and cyclin-dependent kinases: A biochemical view. Biochemical Journal, 308(Pt 3), 697–711.

    PubMed  CAS  Google Scholar 

  • Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., & Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 15, 415–436.

    Article  PubMed  Google Scholar 

  • Sherr, C. J., & Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes and Development, 9, 1149–1163.

    Article  PubMed  CAS  Google Scholar 

  • Sherr, C. J., & Roberts, J. M. (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes and Development, 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  • Solomon, M. J., & Kaldis, P. (1998). Regulation of CDKs by phosphorylation. Results and Problems in Cell Differentiation, 22, 79–109.

    PubMed  CAS  Google Scholar 

  • Solorzano, L., Rieber, M. S., & Rieber, M. (2000). Lower cyclin H and cyclin-dependent kinase-activating kinase activity in cell cycle arrest induced by lack of adhesion to substratum. Cancer Research, 60, 7114–7118.

    PubMed  CAS  Google Scholar 

  • Tassan, J. P., Jaquenoud, M., Fry, A. M., Frutiger, S., Hughes, G. J., & Nigg, E. A. (1995). In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO Journal, 14, 5608–5617.

    PubMed  CAS  Google Scholar 

  • Tator, C. H. (1995). Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathology, 5, 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuroscience, 16, 7599–7609.

    PubMed  CAS  Google Scholar 

  • Yang, H., Lu, P., McKay, H. M., Bernot, T., Keirstead, H., Steward, O., et al. (2006). Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. Journal of Neuroscience, 26, 2157–2166.

    Article  PubMed  CAS  Google Scholar 

  • Yankulov, K. Y., & Bentley, D. L. (1997). Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO Journal, 16, 1638–1646.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.30671046, No.30770488, No.30870320, No.31070723, No.31071288 and No.81070275); Natural Science Foundation of Jiangsu province (No. BK2009156, No. BK2009157 and No. BK2009161); A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingxing Gu or Feng Zhang.

Additional information

Gang Wu and Jianhua Cao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Cao, J., Peng, C. et al. Temporal and Spatial Expression of Cyclin H in Rat Spinal Cord Injury. Neuromol Med 13, 187–196 (2011). https://doi.org/10.1007/s12017-011-8150-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-011-8150-1

Keywords

Navigation