Skip to main content

Advertisement

Log in

Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Gelatin methacrylate (GelMA)-based hydrogels are gaining a great deal of attention as potentially implantable materials in tissue engineering applications because of their biofunctionality and mechanical tenability. Since different natural tissues respond differently to mechanical stresses, an ideal implanted material would closely match the mechanical properties of the target tissue. In this regard, applications employing GelMA hydrogels are currently limited by the low mechanical strength and biocompatibility of GelMA. Therefore, this review focuses on modifications made to GelMA hydrogels to make them more suitable for tissue engineering applications. A large number of reports detail rational synthetic processes for GelMA or describe the incorporation of various biomaterials into GelMA hydrogels to tune their various properties, e.g., physical strength, chemical properties, conductivity, and porosity, and to promote cell loading and accelerate tissue repair. A novel strategy for repairing tissue injuries, based on the transplantation of cell-loaded GelMA scaffolds, is examined and its advantages and challenges are summarized. GelMA-cell combinations play a critical and pioneering role in this process and could potentially accelerate the development of clinically relevant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dey, J., Xu, H., Shen, J., Thevenot, P., Gondi, S., Nguyen, K., et al. (2008). Development of biodegradable crosslinked urethane-doped polyester elastomers. Biomaterials, 29, 4637–4649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guan, J., & Wagner, W. (2005). Synthesis, characterization and cytocompatibility of polyurethaneurea elastomers with designed elastase sensitivity. Biomacromolecules, 6, 2833–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruggeman, J., de Bruin, B., Bettinger, C., & Langer, R. (2008). Biodegradable poly(polyol sebacate) polymers. Biomaterials, 29, 4726–4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bettinger, C., Bruggeman, J., Borenstein, J., & Langer, R. (2008). Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 29, 2315–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Vlierberghe, S., Dubruel, P., & Schacht, E. (2011). Biopolymer-based hydrogels as scaffolds for tissue engineering applications: A review. Biomacromolecules, 12, 1387–1408.

    Article  CAS  PubMed  Google Scholar 

  6. Wichterle, O., & LÍM, D. (1960). Hydrophilic gels for biological use. Nature, 185, 117–118.

    Article  Google Scholar 

  7. Serafim, A., Tucureanu, C., Petre, D.-G., Dragusin, D.-M., Salageanu, A., Van Vlierberghe, S., et al. (2014). One-pot synthesis of superabsorbent hybrid hydrogels based on methacrylamide gelatin and polyacrylamide. Effortless control of hydrogel properties through composition design. New Journal of Chemistry, 38, 3112–3126.

    Article  CAS  Google Scholar 

  8. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for Tissue Engineering. Chemical Reviews, 101, 1869–1880.

    Article  CAS  PubMed  Google Scholar 

  9. Khademhosseini, A., Vacanti, J. P., & Langer, R. (2009). Progress in tissue engineering. Scientific American, 300, 64–71.

    Article  CAS  PubMed  Google Scholar 

  10. Annabi, N., Nichol, J., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Engineering. Part B, Reviews, 16, 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y., Rodrigues, J., & Tomás, H. (2012). Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chemical Society Reviews, 41, 2193–2221.

    Article  CAS  PubMed  Google Scholar 

  12. Pérez, R., Won, J., Knowles, J., & Kim, H. (2013). Naturally and synthetic smart composite biomaterials for tissue regeneration. Advanced Drug Delivery Reviews, 65, 471–496.

    Article  CAS  PubMed  Google Scholar 

  13. Van Den Bulcke, A., Bogdanov, B., De Rooze, N., Schacht, E., Cornelissen, M., & Berghmans, H. (2000). Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1, 31–38.

    Article  CAS  Google Scholar 

  14. Di Lullo, G. A., Sweeney, S. M., Korkko, J., Ala-Kokko, L., & San Antonio, J. D. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. The Journal of Biological Chemistry, 277, 4223–4231.

    Article  CAS  PubMed  Google Scholar 

  15. Rahali, K., Ben Messaoud, G., Kahn, C., Sanchez-Gonzalez, L., Kaci, M., Cleymand, F., Fleutot, S., Linder, M., Desobry, S., & Arab-Tehrany, E. (2017). Synthesis and characterization of Nanofunctionalized gelatin methacrylate hydrogels. International Journal of Molecular Sciences, 18.

  16. Lynn, A. K., Yannas, I. V., & Bonfield, W. (2004). Antigenicity and immunogenicity of collagen. Journal of biomedical materials research Part B, Applied biomaterials, 71, 343–354.

    Article  CAS  PubMed  Google Scholar 

  17. Shirahama, H., Lee, B., Tan, L., & Cho, N. (2016). Precise tuning of facile one-Pot gelatin Methacryloyl (GelMA) synthesis. Scientific Reports, 6, 31036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galis, Z., & Khatri, J. (2002). Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circulation Research, 90, 251–262.

    Article  CAS  PubMed  Google Scholar 

  19. Nichol, J., Koshy, S., Bae, H., Hwang, C., Yamanlar, S., & Khademhosseini, A. (2010). Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31, 5536–5544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Van den Steen, P., Dubois, B., Nelissen, I., Rudd, P., Dwek, R., & Opdenakker, G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology, 37, 375–536.

    Article  PubMed  Google Scholar 

  21. Liu, Y., & Chan-Park, M. (2010). A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 31, 1158–1170.

    Article  CAS  PubMed  Google Scholar 

  22. Yue, K., Trujillo-de Santiago, G., Alvarez, M., Tamayol, A., Annabi, N., & Khademhosseini, A. (2015). Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 73, 254–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Powell, M. (1987). Stability of lidocaine in aqueous solution: Effect of temperature, pH, buffer, and metal ions on amide hydrolysis. Pharmaceutical Research, 4, 42–45.

    Article  CAS  PubMed  Google Scholar 

  24. Ratcliffe, J., Hunneyball, I., Smith, A., Wilson, C., & Davis, S. (1984). Preparation and evaluation of biodegradable polymeric systems for the intra-articular delivery of drugs. The Journal of Pharmacy and Pharmacology, 36, 431–436.

    Article  CAS  PubMed  Google Scholar 

  25. Knopf-Marques, H., Barthes, J., Wolfova, L., Vidal, B., Koenig, G., Bacharouche, J., Francius, G., Sadam, H., Liivas, U., Lavalle, P., & Vrana, N. E. (2017). Auxiliary biomembranes as a directional delivery system to control biological events in cell-laden tissue-engineering scaffolds. ACS Omega, 2, 918–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahadian, S., Ramón-Azcón, J., Ostrovidov, S., Camci-Unal, G., Hosseini, V., Kaji, H., Ino, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2012). Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue. Lab on a Chip, 12, 3491–3503.

    Article  CAS  PubMed  Google Scholar 

  27. Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., & Dubruel, P. (2012). A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials, 33, 6020–6041.

    Article  CAS  PubMed  Google Scholar 

  28. Murtuza, B., Nichol, J., & Khademhosseini, A. (2009). Micro- and nanoscale control of the cardiac stem cell niche for tissue fabrication. Tissue Engineering. Part B, Reviews, 15, 443–454.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aubin, H., Nichol, J., Hutson, C., Bae, H., Sieminski, A., Cropek, D., et al. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31, 6941–6951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klotz, B., Gawlitta, D., Rosenberg, A., Malda, J., & Melchels, F. (2016). Gelatin-Methacryloyl hydrogels: Towards biofabrication-based tissue repair. Trends in Biotechnology, 34, 394–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Celikkin, N., Mastrogiacomo, S., Jaroszewicz, J., Walboomers, X., & Swieszkowski, W. (2018). Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Journal of Biomedical Materials Research. Part A, 106, 201–209.

    Article  CAS  PubMed  Google Scholar 

  32. Schuurman, W., Levett, P., Pot, M., van Weeren, P., Dhert, W., Hutmacher, D., et al. (2013). Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience, 13, 551–561.

    Article  CAS  PubMed  Google Scholar 

  33. Monteiro, N., Thrivikraman, G., Athirasala, A., Tahayeri, A., França, C., Ferracane, J., et al. (2018). Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 34, 389–399.

    Article  CAS  PubMed  Google Scholar 

  34. Shin, H., Nichol, J., & Khademhosseini, A. (2011). Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels. Acta Biomaterialia, 7, 106–114.

    Article  CAS  PubMed  Google Scholar 

  35. Coutinho, D., Sant, S., Shin, H., Oliveira, J., Gomes, M., Neves, N., et al. (2010). Modified Gellan gum hydrogels with tunable physical and mechanical properties. Biomaterials, 31, 7494–7502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Assmann, A., Vegh, A., Ghasemi-Rad, M., Bagherifard, S., Cheng, G., Sani, E., et al. (2017). A highly adhesive and naturally derived sealant. Biomaterials, 140, 115–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, Y., Lee, J., Bae, P., Chung, I., Chung, B., & Chung, B. (2015). Photo-crosslinkable hydrogel-based 3D microfluidic culture device. Electrophoresis, 36, 994–1001.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z., Kumar, H., Tian, Z., Jin, X., Holzman, J., Menard, F., et al. (2018). Visible light Photoinitiation of cell-adhesive gelatin Methacryloyl hydrogels for Stereolithography 3D bioprinting. ACS Applied Materials & Interfaces, 10, 26859–26869.

    Article  CAS  Google Scholar 

  39. Bartnikowski, M., Bartnikowski, N., Woodruff, M., Schrobback, K., & Klein, T. (2015). Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomaterialia, 27, 66–76.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y., Lin, R., Qi, H., Yang, Y., Bae, H., Melero-Martin, J., et al. (2012). Functional human vascular network generated in Photocrosslinkable gelatin methacrylate hydrogels. Advanced Functional Materials, 22, 2027–2039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, B., Lum, N., Seow, L., Lim, P., & Tan, L. (2016). Synthesis and characterization of types a and B gelatin Methacryloyl for bioink applications. Materials (Basel), 9.

  42. Nikkhah, M., Eshak, N., Zorlutuna, P., Annabi, N., Castello, M., Kim, K., Dolatshahi-Pirouz, A., Edalat, F., Bae, H., Yang, Y., & Khademhosseini, A. (2012). Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels. Biomaterials, 33, 9009–9018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, C., Su, J., Lee, S., & Lin, Y. (2018). Stiffness modification of Photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine.

  44. Eke, G., Mangir, N., Hasirci, N., MacNeil, S., & Hasirci, V. (2017). Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials, 129, 188–198.

    Article  CAS  PubMed  Google Scholar 

  45. Gao, G., Schilling, A., Hubbell, K., Yonezawa, T., Truong, D., Hong, Y., et al. (2015). Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA. Biotechnology Letters, 37, 2349–2355.

    Article  CAS  PubMed  Google Scholar 

  46. Bae, J., Lee, J., & Chung, B. (2016). Hydrogel-encapsulated 3D microwell array for neuronal differentiation. Biomedical Materials, 11, 015019.

    Article  CAS  PubMed  Google Scholar 

  47. Zheng, J., Zhao, F., Zhang, W., Mo, Y., Zeng, L., Li, X., & Chen, X. (2018). Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science & Engineering. C, Materials for Biological Applications, 89, 119–127.

    Article  CAS  Google Scholar 

  48. Li, H., Tan, Y., Liu, S., & Li, L. (2018). Three-dimensional bioprinting of oppositely charged hydrogels with super strong Interface bonding. ACS Applied Materials & Interfaces, 10, 11164–11174.

    Article  CAS  Google Scholar 

  49. DeForest, C., & Anseth, K. (2012). Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng, 3, 421–444.

    Article  CAS  PubMed  Google Scholar 

  50. Malda, J., Visser, J., Melchels, F., Jüngst, T., Hennink, W., Dhert, W., et al. (2013). 25th anniversary article: Engineering hydrogels for biofabrication. Adv Mater Weinheim, 25, 5011–5028.

    Article  CAS  Google Scholar 

  51. Liu, Y., & Chan-Park, M. (2009). Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Biomaterials, 30, 196–207.

    Article  CAS  PubMed  Google Scholar 

  52. Suri, S., & Schmidt, C. (2009). Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomaterialia, 5, 2385–2397.

    Article  CAS  PubMed  Google Scholar 

  53. Ramón-Azcón, J., Ahadian, S., Estili, M., Liang, X., Ostrovidov, S., Kaji, H., Shiku, H., Ramalingam, M., Nakajima, K., Sakka, Y., Khademhosseini, A., & Matsue, T. (2013). Dielectrophoretically aligned carbon nanotubes to control electrical and mechanical properties of hydrogels to fabricate contractile muscle myofibers. Adv Mater Weinheim, 25, 4028–4034.

    Article  CAS  Google Scholar 

  54. Ahadian, S., Yamada, S., Ramón-Azcón, J., Estili, M., Liang, X., Nakajima, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2016). Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies. Acta Biomaterialia, 31, 134–143.

    Article  CAS  PubMed  Google Scholar 

  55. Stratesteffen, H., Köpf, M., Kreimendahl, F., Blaeser, A., Jockenhoevel, S., & Fischer, H. (2017). GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication, 9, 045002.

    Article  CAS  PubMed  Google Scholar 

  56. Xiao, W., He, J., Nichol, J., Wang, L., Hutson, C., Wang, B., et al. (2011). Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrating polymer network hydrogels. Acta Biomaterialia, 7, 2384–2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pacelli, S., Rampetsreiter, K., Modaresi, S., Subham, S., Chakravarti, A., Lohfeld, S., et al. (2018). Fabrication of a double-cross-linked interpenetrating polymeric network (IPN) hydrogel surface modified with Polydopamine to modulate the osteogenic differentiation of adipose-derived stem cells. ACS Applied Materials & Interfaces, 10, 24955–24962.

    Article  CAS  Google Scholar 

  58. Zuo, Y., Liu, X., Wei, D., Sun, J., Xiao, W., Zhao, H., Guo, L., Wei, Q., Fan, H., & Zhang, X. (2015). Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon. ACS Applied Materials & Interfaces, 7, 10386–10394.

    Article  CAS  Google Scholar 

  59. Suo, H., Xu, K., & Zheng, X. (2015). Using glucosamine to improve the properties of photocrosslinked gelatin scaffolds. Journal of Biomaterials Applications, 29, 977–987.

    Article  CAS  PubMed  Google Scholar 

  60. Soucy, J., Shirzaei Sani, E., Portillo Lara, R., Diaz, D., Dias, F., Weiss, A., et al. (2018). Photocrosslinkable gelatin/Tropoelastin hydrogel adhesives for peripheral nerve repair. Tissue Engineering. Part A, 24, 1393–1405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, H., Zhou, L., Liao, J., Tan, Y., Ouyang, K., Ning, C., Ni, G., & Tan, G. (2014). Cell-laden photocrosslinked GelMA-DexMA copolymer hydrogels with tunable mechanical properties for tissue engineering. Journal of Materials Science. Materials in Medicine, 25, 2173–2183.

    Article  CAS  PubMed  Google Scholar 

  62. Cha, C., Oh, J., Kim, K., Qiu, Y., Joh, M., Shin, S., et al. (2014). Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules, 15, 283–290.

    Article  CAS  PubMed  Google Scholar 

  63. Daniele, M., Adams, A., Naciri, J., North, S., & Ligler, F. (2014). Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Biomaterials, 35, 1845–1856.

    Article  CAS  PubMed  Google Scholar 

  64. Visser, J., Melchels, F., Jeon, J., van Bussel, E., Kimpton, L., Byrne, H., et al. (2015). Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications, 6, 6933.

    Article  CAS  PubMed  Google Scholar 

  65. Luan, C., Wang, H., Han, Q., Ma, X., Zhang, D., Xu, Y., Chen, B., Li, M., & Zhao, Y. (2018). Folic acid-functionalized hybrid photonic barcodes for capture and release of circulating tumor cells. ACS Applied Materials & Interfaces, 10, 21206–21212.

    Article  CAS  Google Scholar 

  66. Miri, A., Nieto, D., Iglesias, L., Goodarzi Hosseinabadi, H., Maharjan, S., Ruiz-Esparza, G., et al. (2018). Microfluidics-enabled multimaterial Maskless stereolithographic bioprinting. Adv Mater Weinheim, 30, e1800242.

    Article  CAS  Google Scholar 

  67. Shin, S., Bae, H., Cha, J., Mun, J., Chen, Y., Tekin, H., et al. (2012). Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano, 6, 362–372.

    Article  CAS  PubMed  Google Scholar 

  68. Shin, S., Jung, S., Zalabany, M., Kim, K., Zorlutuna, P., Kim, S., et al. (2013). Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano, 7, 2369–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ahadian, S., Ramón-Azcón, J., Estili, M., Liang, X., Ostrovidov, S., Shiku, H., et al. (2014). Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication. Scientific Reports, 4, 4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun, H., Tang, J., Mou, Y., Zhou, J., Qu, L., Duval, K., Huang, Z., Lin, N., Dai, R., Liang, C., Chen, Z., Tang, L., & Tian, F. (2017). Carbon nanotube-composite hydrogels promote intercalated disc assembly in engineered cardiac tissues through β1-integrin mediated FAK and RhoA pathway. Acta Biomaterialia, 48, 88–99.

    Article  CAS  PubMed  Google Scholar 

  71. Paul, A., Hasan, A., Kindi, H., Gaharwar, A., Rao, V., Nikkhah, M., et al. (2014). Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 8, 8050–8062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cha, C., Shin, S., Gao, X., Annabi, N., Dokmeci, M., Tang, X., et al. (2014). Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide. Small, 10, 514–523.

    Article  CAS  PubMed  Google Scholar 

  73. Shin, S., Zihlmann, C., Akbari, M., Assawes, P., Cheung, L., Zhang, K., et al. (2016). Reduced graphene oxide-GelMA hybrid hydrogels as scaffolds for cardiac tissue engineering. Small, 12, 3677–3689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vashist, S., Zheng, D., Al-Rubeaan, K., Luong, J., & Sheu, F. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnology Advances, 29, 169–188.

    Article  CAS  PubMed  Google Scholar 

  75. Fabbro, C., Ali-Boucetta, H., Da Ros, T., Kostarelos, K., Bianco, A., & Prato, M. (2012). Targeting carbon nanotubes against cancer. Chem Commun (Camb), 48, 3911–3926.

    Article  CAS  Google Scholar 

  76. Shim, J., Grosberg, A., Nawroth, J. C., Parker, K. K., & Bertoldi, K. (2012). Modeling of cardiac muscle thin films: Pre-stretch, passive and active behavior. Journal of Biomechanics, 45, 832–841.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liu, W., Zhong, Z., Hu, N., Zhou, Y., Maggio, L., Miri, A., et al. (2018). Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, 10, 024102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levett, P., Melchels, F., Schrobback, K., Hutmacher, D., Malda, J., & Klein, T. (2014). A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomaterialia, 10, 214–223.

    Article  CAS  PubMed  Google Scholar 

  79. Boere, K., Visser, J., Seyednejad, H., Rahimian, S., Gawlitta, D., van Steenbergen, M., et al. (2014). Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia, 10, 2602–2611.

    Article  CAS  PubMed  Google Scholar 

  80. Gauvin, R., Chen, Y., Lee, J., Soman, P., Zorlutuna, P., Nichol, J., et al. (2012). Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 33, 3824–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, J., Li, H., Yao, Y., Zhao, T., Chen, Y., Shen, Y., Wang, L. L., & Zhu, Y. (2018). Stem cell-derived mitochondria transplantation: A novel strategy and the challenges for the treatment of tissue injury. Stem Cell Research & Therapy, 9, 106.

    Article  CAS  Google Scholar 

  82. Bianco, P., & Robey, P. (2001). Stem cells in tissue engineering. Nature, 414, 118–121.

    Article  CAS  PubMed  Google Scholar 

  83. Liu, S., Schackel, T., Weidner, N., & Puttagunta, R. (2017). Biomaterial-supported cell transplantation treatments for spinal cord injury: Challenges and perspectives. Frontiers in Cellular Neuroscience, 11, 430.

    Article  CAS  PubMed  Google Scholar 

  84. West, J. (2011). Protein-patterned hydrogels: Customized cell microenvironments. Nature Materials, 10, 727–729.

    Article  CAS  PubMed  Google Scholar 

  85. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  86. Yamanaka, S. (2012). Induced pluripotent stem cells: Past, present, and future. Cell Stem Cell, 10, 678–684.

    Article  CAS  PubMed  Google Scholar 

  87. DeBrot, A., & Yao, L. (2018). The combination of induced pluripotent stem cells and bioscaffolds holds promise for spinal cord regeneration. Neural Regeneration Research, 13, 1677–1684.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Fan, L., Liu, C., Chen, X., Zou, Y., Zhou, Z., Lin, C., Tan, G., Zhou, L., Ning, C., & Wang, Q. (2018). Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair. ACS Applied Materials & Interfaces, 10, 17742–17755.

    Article  CAS  Google Scholar 

  89. Cízková, D., Rosocha, J., Vanický, I., Jergová, S., & Cízek, M. (2006). Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cellular and Molecular Neurobiology, 26, 1167–1180.

    Article  PubMed  Google Scholar 

  90. Shao, N., Guo, J., Guan, Y., Zhang, H., Li, X., Chen, X., Zhou, D., & Huang, Y. (2018). Development of organic/inorganic compatible and sustainably bioactive composites for effective bone regeneration. Biomacromolecules, 19, 3637–3648.

    Article  CAS  PubMed  Google Scholar 

  91. Visser, J., Gawlitta, D., Benders, K., Toma, S., Pouran, B., van Weeren, P., et al. (2015). Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles. Biomaterials, 37, 174–182.

    Article  CAS  PubMed  Google Scholar 

  92. Chen, X., Katakowski, M., Li, Y., Lu, D., Wang, L., Zhang, L., Chen, J., Xu, Y., Gautam, S., Mahmood, A., & Chopp, M. (2002). Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: Growth factor production. Journal of Neuroscience Research, 69, 687–691.

    Article  CAS  PubMed  Google Scholar 

  93. Mendonça, M., Larocca, T., de Freitas Souza, B., Villarreal, C., Silva, L., Matos, A., et al. (2014). Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Research & Therapy, 5, 126.

    Article  Google Scholar 

  94. Su, P., Tian, Y., Yang, C., Ma, X., Wang, X., Pei, J., & Qian, A. (2018). Mesenchymal stem cell migration during bone formation and bone diseases therapy. International Journal of Molecular Sciences, 19.

  95. Hu, M., Borrelli, M., Lorenz, H., Longaker, M., & Wan, D. (2018). Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells International, 2018, 1–13.

    Google Scholar 

  96. Sheehy, E., Mesallati, T., Kelly, L., Vinardell, T., Buckley, C., & Kelly, D. (2015). Tissue engineering whole bones through endochondral ossification: Regenerating the distal phalanx. Biores Open Access, 4, 229–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mesallati, T., Sheehy, E., Vinardell, T., Buckley, C., & Kelly, D. (2015). Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. European Cells & Materials, 30, 163–185; discussion 85-6.

    Article  CAS  Google Scholar 

  98. Daly, A., Pitacco, P., Nulty, J., Cunniffe, G., & Kelly, D. (2018). 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials, 162, 34–46.

    Article  CAS  PubMed  Google Scholar 

  99. Erkoc, P., Seker, F., Bagci-Onder, T., & Kizilel, S. (2018). Gelatin Methacryloyl hydrogels in the absence of a Crosslinker as 3D glioblastoma Multiforme (GBM)-mimetic microenvironment. Macromolecular Bioscience, 18.

  100. Lin, R., Chen, Y., Moreno-Luna, R., Khademhosseini, A., & Melero-Martin, J. (2013). Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials, 34, 6785–6796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. McKay, R. (1997). Stem cells in the central nervous system. Science, 276, 66–71.

  102. Han, S., Kang, D., Mujtaba, T., Rao, M., & Fischer, I. (2002). Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Experimental Neurology, 177, 360–375.

    Article  PubMed  Google Scholar 

  103. Huang, L., & Wang, G. (2017). The effects of different factors on the behavior of neural stem cells. Stem Cells International, 2017, 9497325.

    PubMed  PubMed Central  Google Scholar 

  104. Zhou, X., Cui, H., Nowicki, M., Miao, S., Lee, S. J., Masood, F., Harris, B.T., Zhang, L.G. (2018). Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Applied Materials & Interfaces, 10(10), 8993-9001.

  105. Gronthos, S., Franklin, D., Leddy, H., Robey, P., Storms, R., & Gimble, J. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. Journal of Cellular Physiology, 189, 54–63.

    Article  CAS  PubMed  Google Scholar 

  106. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., & Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33, 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  107. Fraser, J., Wulur, I., Alfonso, Z., & Hedrick, M. (2006). Fat tissue: An underappreciated source of stem cells for biotechnology. Trends in Biotechnology, 24, 150–154.

    Article  CAS  PubMed  Google Scholar 

  108. Onofrillo, C., Duchi, S., O'Connell, C., Blanchard, R., O'Connor, A., Scott, M., et al. (2018). Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication, 10, 045006.

    Article  CAS  PubMed  Google Scholar 

  109. McKay, R. (2000). Stem cells — Hype and hope. Nature, 406, 361–364.

    Article  CAS  PubMed  Google Scholar 

  110. Ahadian, S., Yamada, S., Ramón-Azcón, J., Ino, K., Shiku, H., Khademhosseini, A., & Matsue, T. (2014). Rapid and high-throughput formation of 3D embryoid bodies in hydrogels using the dielectrophoresis technique. Lab on a Chip, 14, 3690–3694.

    Article  CAS  PubMed  Google Scholar 

  111. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634–7638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  CAS  PubMed  Google Scholar 

  113. Park, I. H., Arora, N., Huo, H., Maherali, N., Ahfeldt, T., Shimamura, A., Lensch, M. W., Cowan, C., Hochedlinger, K., & Daley, G. Q. (2008). Disease-specific induced pluripotent stem cells. Cell, 134, 877–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Grant Nos. 81401011, 81572229, 81673777), the Natural Science Foundation of Zhejiang, China (Grant No.LY15H060004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linlin Wang or Kan Xu.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Zhao, T., Wang, J. et al. Gelatin Methacrylate (GelMA)-Based Hydrogels for Cell Transplantation: an Effective Strategy for Tissue Engineering. Stem Cell Rev and Rep 15, 664–679 (2019). https://doi.org/10.1007/s12015-019-09893-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-019-09893-4

Keywords

Navigation