Skip to main content

Advertisement

Log in

Methods for the Identification, Characterization and Banking of Human DPSCs: Current Strategies and Perspectives

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Dental pulp stem cells (DPSCs), originating from neural crests, can be found within dental pulp. Up to now, it has been demonstrated that these cells are capable of producing bone tissue, both in vitro and in vivo and differentiate into adipocytes, endotheliocytes, melanocytes, neurons, glial cells, and can be easily cryopreserved and stored. Moreover, recent attention has been focused on tissue engineering and on the properties of these cells. In addition, adult bone tissue with good vascularisation has been obtained in grafts. The latest use in clinical trials for bone repair enforces the notion that DPSCs can be used successfully in patients. Therefore, their isolation, selection, differentiation and banking is of great importance. The isolation and detection techniques used in most laboratories are based on the use of antibodies revealed by flow-cytometers with cell sorter termed FACS (fluorescent activated cell sorter). In this report, we focus our attention on the main procedures used in the selection of DPSCs by flow cytometry, cell culture, freezing/thawing, cell cycle evaluation, histochemistry/immunofluorescence and differentiation of DPSCs. In addition, new methods/protocols to select and isolate stem cells without staining by fluorescent markers for implementation in biomedical/clinical laboratories are discuss. We emphasize that the new methods must address simplicity and short times of preparation and use of samples, complete sterility of cells, the potential disposable, low cost and complete maintenance of the viability and integrity of the cells with real-time response for subsequent applications in the biomedical/clinical/surgical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Parker, G. C., Anastassova-Kristeva, M., Broxmeyer, H. E., et al. (2004). Stem cells: shibboleths of development. Stem Cells and Development, 13(6), 579–584.

    Article  PubMed  Google Scholar 

  2. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9(5), 641–650.

    Article  PubMed  CAS  Google Scholar 

  3. Alhadlaq, A., & Mao, J. J. (2004). Mesenchymal stem cells: isolation and therapeutics. Stem Cells and Development, 13(4), 436–448. Review.

    Article  PubMed  CAS  Google Scholar 

  4. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  PubMed  CAS  Google Scholar 

  5. Nerem, R. M. (1992). Tissue engineering in the USA. Medical & Biological Engineering & Computing, 30(4), CE8-12. Review.

    Article  Google Scholar 

  6. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926. Review.

    Article  PubMed  CAS  Google Scholar 

  7. Laino, G., d’Aquino, R., Graziano, A., et al. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20(8), 1394–1402.

    Article  PubMed  Google Scholar 

  8. Papaccio, G., Graziano, A., d’Aquino, R., et al. (2006). Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Journal of Cellular Physiology, 208(2), 319–325.

    Article  PubMed  CAS  Google Scholar 

  9. d’Aquino, R., Graziano, A., Sampaolesi, M., Laino, G., Pirozzi, G., De Rosa, A., et al. (2007). Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death and Differentiation, 14(6), 1162–1171.

    Article  PubMed  Google Scholar 

  10. Graziano, A., d’Aquino, R., Laino, G., & Papaccio, G. (2008). Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Reviews, 4(1), 21–26. Review.

    Article  PubMed  Google Scholar 

  11. Paino, F., Ricci, G., De Rosa, A., et al. (2010). Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. European Cells and Materials, 20, 295–305.

    PubMed  CAS  Google Scholar 

  12. Sinanan, A. C., Hunt, N. P., & Lewis, M. P. (2004). Human adult craniofacial muscle-derived cells: neural-cell adhesion-molecule (NCAM; CD56)-expressing cells appear to contain multipotential stem cells. Biotechnology and Applied Biochemistry, 40, 25–34.

    Article  PubMed  CAS  Google Scholar 

  13. Goldberg, M., & Smith, A. J. (2004). Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Critical Reviews in Oral Biology and Medicine, 15, 13–27.

    Article  PubMed  Google Scholar 

  14. Jo, Y. Y., Lee, H. J., Kook, S. Y., et al. (2007). Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Engineering, 13, 767–773.

    Article  PubMed  CAS  Google Scholar 

  15. Gronthos, S., Mankani, M., Brahim, J., Robey, P. G., & Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 97, 13625–13630.

    Article  PubMed  CAS  Google Scholar 

  16. Laino, G., Graziano, A., d’Aquino, R., et al. (2006). An approachable human adult stem cell source for hard-tissue engineering. Journal of Cellular Physiology, 206, 693–701.

    Article  PubMed  CAS  Google Scholar 

  17. Battye, F. L., Light, A., & Tarlinton, D. M. (2000). Single cell sorting and cloning. Journal of Immunological Methods, 243(1–2), 25–32. Review.

    Article  PubMed  CAS  Google Scholar 

  18. Battye, F. L., & Shortman, K. (1991). Flow cytometry and cell-separation procedures. Current Opinion in Immunology, 3(2), 238–241. Review.

    Article  PubMed  CAS  Google Scholar 

  19. Tucker, H. A., & Bunnell, B. A. (2011). Characterization of human adipose-derived stem cells using flow cytometry. Methods in Molecular Biology, 702, 121–131.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, L., Gaigalas, A. K., Marti, G. E., Abbasi, F., & Hoffman, R. A. (2008). Toward quantitative fluorescence measurements with multicolor flow cytometry. Cytometry. Part A, 73A, 279–288.

    Article  CAS  Google Scholar 

  21. Kern, W., Schnittger, S., Voskova, D., Hiddemann, W., Schoch, C., & Haferlach, T. (2004). Prognostication in acute myeloid leukemia: applicability and role of multi-parametric flow cytometry to quantify minimal residual disease in comparison to established prognostic parameters. Cytometry, Part A59A, p. 59.

  22. Weir, E. G., & Borowitz, M. J. (2001). Flow cytometry in the diagnosis of acute leukemia. Seminars in Hematology, 38, 124.

    Article  PubMed  CAS  Google Scholar 

  23. Wood, B. L. (2007). Myeloid malignancies: myelodysplastic syndromes, myeloproliferative disorders, and acute myeloid leukemia. Clinics in Laboratory Medicine, 27, 551. vii.

    Article  PubMed  Google Scholar 

  24. Wong, Y. Y., Ng, S. P., Ng, M. H., Si, S. H., Yao, S. Z., & Fung, Y. S. (2002). Immunosensor for the differentiation and detection of Salmonella species based on a quartz crystal microbalance. Biosensors & Bioelectronics, 17, 676.

    Article  CAS  Google Scholar 

  25. Bovenizer, J. S., Jacobs, M. B., O’Sullivan, C., & Guilbault, G. G. (1998). The detection of pseudomonas aeruginosa using the quartz crystal microbalance. Analytical Letters, 31, 1287.

    CAS  Google Scholar 

  26. Battaglia, R., Palomba, E., Palumbo, P., Colangeli, L., & della Corte, V. (2004). Development of a micro-balance system for dust and water vapor detection in the Mars atmosphere. Advances in Space Research, 33(12), 2258–2262.

    Article  CAS  Google Scholar 

  27. Muramatsu, H., Dicks, J. M., Tamiya, E., & Karube, I. (1987). Piezoelectric crystal biosensor modified with protein A for determination of immunoglobulins. Analytical Chemistry, 59, 2760–2763.

    Article  PubMed  CAS  Google Scholar 

  28. Lasky, S. J., & Buttry, D. A. (1989). Sensors based on biomolecules immobilized on the piezoelectric quartz crystal microbalance. Chemical Sensors and Microinstrumentation, 403, 237–251.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants FIRB_06/10 to GP.

Conflicts of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianpaolo Papaccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirino, V., Paino, F., d’Aquino, R. et al. Methods for the Identification, Characterization and Banking of Human DPSCs: Current Strategies and Perspectives. Stem Cell Rev and Rep 7, 608–615 (2011). https://doi.org/10.1007/s12015-011-9235-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9235-9

Keywords

Navigation