Skip to main content
Log in

Tocopherol Moderately Induces the Expressions of Some Human Sulfotransferases, which are Activated by Oxidative Stress

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Oxidative stress is generated in biological system by several endogenous/exogenous factors like environmental-pollution/toxicity/diseases and by daily-life-stress. We previously showed that oxidative-stress impaired the activities/expressions of phase-II drug-metabolizing enzyme, sulfotransferases (SULTs). The SULT catalyzes sulfation of endogenous/exogenous compounds. Vitamin E is globally consumed by a large number of individuals for the cellular protection from oxidative stress and aging. Here, vitamin E (tocopherol; α/γ and tocotrienol; α/γ; 0, 1, 10, or 100 μM) was tested in human carcinoma cell line, HepG2 for their influences on SULTs expression/(western blotting). The effects of oxidant (glutathione-oxidized/GSSG) or reductant (glutathione-reduced/GSH, Dithiothreitol/DTT) on SULT activities were studied in rat-liver/human intestinal tissues. Results suggest, tocopherol is more inductive to monoamine-SULT (MPST) and Dehydroepiandrosterone-SULT (DHEAST) compared to that of tocotrienol (inconsistent change in PPST, phenol sulfotransferase/MPST/EST, estrogen sulfotransferase). The nuclear-factor constitutive androstane receptor (CAR) was found to be induced moderately. This study overall describes that vitamin E moderately influences SULTs expression. The induction ability of tocopherol should be judged taking into account its long-term consummation. Oxidative stress activates rat and human SULTs activities and expressions. Further studies are necessary in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinberg, C. E. (2012). Stress ecology: environmental stress as ecological driving force and key player in evolution. Springer Science & Business Media.

  2. Pickett, S. T., Cadenasso, M. L., Grove, J. M., Nilon, C. H., Pouyat, R. V., Zipperer, W. C., & Costanza, R. (2001). Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas. Annual Review of Ecology and Systematics, 32(1), 127–157.

    Article  Google Scholar 

  3. Berg, D., Youdim, M. B., & Riederer, P. (2004). Redox imbalance. Cell and Tissue Research, 318(1), 201–213.

    Article  Google Scholar 

  4. Ďuračková, Z. (2010). Some current insights into oxidative stress. Physiological Research, 59(4), 459–469.

  5. Al-Horani, R. A., & Desai, U. R. (2010). Chemical sulfation of small molecules–advances and challenges. Tetrahedron, 66(16), 2907.

    Article  CAS  Google Scholar 

  6. van Lipzig, M. M. H. (2011). The estrogen receptor, environmental estrogens and the role of cytochrome P450 in bioactivation. Vrije Universiteit. https://research.vu.nl/en/publications/17f1bcae-61a7-4636-a9.

  7. Jancova, P., Anzenbacher, P., & Anzenbacherova, E. (2010). Phase II drug metabolizing enzymes. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia Republic, 154(2), 103–116.

    Article  CAS  Google Scholar 

  8. Giles, G. I. (2006). The redox regulation of thiol dependent signaling pathways in cancer. Current Pharmaceutical Design, 12(34), 4427–4443.

    Article  CAS  Google Scholar 

  9. Duffel, M. W., Marshall, A. D., McPhie, P., Sharma, V., & Jakoby, W. B. (2001). Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metabolism Reviews, 33(3–4), 369–395.

    Article  CAS  Google Scholar 

  10. Finkel, T. (2003). Oxidant signals and oxidative stress. Current Opinion in Cell Biology, 15(2), 247–254.

    Article  CAS  Google Scholar 

  11. Maiti, S., Chen, X., & Chen, G. (2005). All trans retinoic acid induction of sulfotransferases. Basic & Clinical Pharmacology & Toxicology, 96(1), 44–53.

    Article  CAS  Google Scholar 

  12. Dutta, S. M., Maiti, S., & Chen, G. (2008). Effect of folic acid on methotrexate induction of sulfotransferases in rats. Drug Metabolism Letters, 2(2), 115.

    Article  CAS  Google Scholar 

  13. Chen, X., Maiti, S., Zhang, J., & Chen, G. (2006). Nuclear receptor interactions in methotrexate induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1). Journal of Biochemical and Molecular Toxicology, 20(6), 309–317.

    Article  CAS  Google Scholar 

  14. Zhao, Y., Monahan, F. J., McNulty, B. A., Gibney, M. J., & Gibney, E. R. (2014). Effect of vitamin E intake from food and supplement sources on plasma α-and γ-tocopherol concentrations in a healthy Irish adult population. British Journal of Nutrition, 112(9), 1575–1585.

    Article  CAS  Google Scholar 

  15. Singh, U., Devaraj, S., & Jialal, I. (2005). Vitamin E, oxidative stress, and inflammation. Annual Review of Nutrition, 25, 151–174.

    Article  CAS  Google Scholar 

  16. Chen, G., Baron, J., & Duffel, M. W. (1995). Enzyme-and sex-specific differences in the intralobular localizations and distributions of aryl sulfotransferase IV (tyrosine-ester sulfotransferase) and alcohol (hydroxysteroid) sulfotransferasea in rat liver. Drug Metabolism and Disposition, 23(12), 1346–1353.

    CAS  PubMed  Google Scholar 

  17. Apak, T. I., & Duffel, M. W. (2004). Interactions of the stereoisomers of α-hydroxytamoxifen with human hydroxysteroidsulfotransferase SULT2A1 and rat hydroxysteroid sulfotransferase STa. Drug Metabolism and Disposition, 32(12), 1501–1508.

    Article  CAS  Google Scholar 

  18. Maiti, S., Dutta, S. M., & Chen, G. (2014). Apoptosis inducing anthraquinone rhein and emodin differentially suppress human dehydroepiandrosterone sulfotransferase (hSULT2A1) and phenol sulfotransferases (hSULT1A1) in Hep-G2 and Caco-2 cells. Mediterranean Journal of Nutrition and Metabolism, 7(3), 145–153.

    Article  Google Scholar 

  19. Maiti, S., & Chen, G. (2003). Methotrexate is a novel inducer of rat liver and intestinal sulfotransferases. Archives of Biochemistry and Biophysics, 418(2), 161–168.

    Article  CAS  Google Scholar 

  20. Maiti, S., & Chen, G. (2003). Tamoxifen induction of aryl sulfotransferase and hydroxysteroid sulfotransferase in male and female rat liver and intestine. Drug Metabolism and Disposition, 31(5), 637–644.

    Article  CAS  Google Scholar 

  21. Falany, J. L., Pilloff, D. E., Leyh, T. S., & Falany, C. N. (2006). Sulfation of raloxifene and 4-hydroxytamoxifen by human cytosolic sulfotransferases. Drug Metabolism and Disposition, 34(3), 361–368.

    Article  CAS  Google Scholar 

  22. Maiti, S., Dutta, S. M., Baker, S. M., Zhang, J., Narasaraju, T., Liu, L., & Chen, G. (2005). In vivo and in vitro oxidative regulation of rat aryl sulfotransferase IV (AST IV). Journal of Biochemical and Molecular Toxicology, 19(2), 109–118.

    Article  CAS  Google Scholar 

  23. Banerjee, S., Ghosh, J., & Sil, P. C. (2016). Drug metabolism and oxidative stress: cellular mechanism and new therapeutic insights. Biochemistry & Analytical Biochemistry, 5(225), 2161–1009.

    Google Scholar 

  24. Maiti, S., & Chen, G. (2015). Ethanol up-regulates phenol sulfotransferase (SULT1A1) and hydroxysteroid sulfotransferase (SULT2A1) in rat liver and intestine. Archives of Physiology and Biochemistry, 121(2), 68–74.

    Article  CAS  Google Scholar 

  25. Suiko, M., Kurogi, K., Hashiguchi, T., Sakakibara, Y., & Liu, M. C. (2017). Updated perspectives on the cytosolic sulfotransferases (SULTs) and SULT-mediated sulfation. Bioscience, Biotechnology, and Biochemistry, 81(1), 63–72.

    Article  CAS  Google Scholar 

  26. Iwasaki, M., Iwama, M., Miyata, N., Iitoi, Y., & Kanke, Y. (1994). Effects of vitamin E deficiency on hepatic microsomal cytochrome P450 and phase II enzymes in male and female rats. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift fur Vitamin-und Ernahrungsforschung. Journal International de Vitaminologieet de Nutrition, 64(2), 109–112.

    CAS  Google Scholar 

  27. Mustacich, D. J., Gohil, K., Bruno, R. S., Yan, M., Leonard, S. W., Ho, E., Cross, C. E., & Traber, M. G. (2009). Alpha-tocopherol modulates genes involved in hepatic xenobiotic pathways in mice. The Journal of Nutritional Biochemistry, 20(6), 469–476.

    Article  CAS  Google Scholar 

  28. Hoelzl, C., Glatt, H., Meinl, W., Sontag, G., Haidinger, G., Kundi, M., Simic, T., Chakraborty, A., Bichler, J., Ferk, F., & Angelis, K. (2008). Consumption of Brussels sprouts protects peripheral human lymphocytes against 2‐amino‐1‐methyl‐6‐phenylimidazo [4, 5‐b] pyridine (PhIP) and oxidative DNA‐damage: results of a controlled human intervention trial. Molecular Nutrition & Food Research, 52(3), 330–341.

    Article  CAS  Google Scholar 

  29. Alyoussef, A., & Al-Gayyar, M. M. (2018). Cytotoxic and partial hepatoprotective activity of sodium ascorbate against hepatocellular carcinoma through inhibition of sulfatase-2 in vivo and in vitro. Biomedicine & Pharmacotherapy, 103, 362–372.

    Article  CAS  Google Scholar 

  30. Ahn, J., Park, S., Zuniga, B., Bera, A., Song, C. S., Chatterjee, B. (2016). Vitamin D in prostate cancer. Vitam Horm. 100, 321–355. https://doi.org/10.1016/bs.vh.2015.10.012.

  31. Wong, T., Wang, Z., Chapron, B. D., Suzuki, M., Claw, K. G., Gao, C., Foti, R. S., Prasad, B., Chapron, A., Calamia, J., & Chaudhry, A. (2018). Polymorphic human sulfotransferase 2A1 mediates the formation of 25-hydroxyvitamin D3-3-O-sulfate, a major circulating vitamin D metabolite in humans. Drug Metabolism and Disposition, 46(4), 367–379.

    Article  CAS  Google Scholar 

  32. Sundaram, K. S., & Lev, M. (1990). Vitamin K and phosphate mediated enhancement of brain sulfotransferase activity. Biochemical and Biophysical Research Communications, 169(3), 927–932.

    Article  CAS  Google Scholar 

  33. Sundaram, K. S., & Lev, M. (1990). Regulation of sulfotransferase activity by vitamin K in mouse brain. Archives of Biochemistry and Biophysics, 277(1), 109–113.

    Article  CAS  Google Scholar 

  34. Jain, S. K., McVie, R., & Smith, T. (2000). Vitamin E supplementation restores glutathione and malondialdehyde to normal concentrations in erythrocytes of type 1 diabetic children. Diabetes Care, 23(9), 1389–1394. https://doi.org/10.2337/diacare.23.9.1389.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Members of Oriental Institute of Science and Technology, Midnapore; Central Instrumentation facility, Dept. Physiological Sciences, Oklahoma State University, Stillwater.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smarajit Maiti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MaitiDutta, S., Chen, G. & Maiti, S. Tocopherol Moderately Induces the Expressions of Some Human Sulfotransferases, which are Activated by Oxidative Stress. Cell Biochem Biophys 78, 439–446 (2020). https://doi.org/10.1007/s12013-020-00938-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00938-x

Keywords

Navigation