Skip to main content
Log in

Peroxisome Proliferator-Activated Receptor γ Ligands Retard Cultured Vascular Smooth Muscle Cells Calcification Induced by High Glucose

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor γ (PPARγ) and its ligands have profound effects on glucose homeostasis, cardiovascular diseases, and bone metabolism. To explore the pathophysiological roles of PPARγ in diabetes with concomitant vascular calcification, we investigated changes in PPARγ expression and the effect of the PPARγ ligands troglitazone and rosiglitazone on vascular smooth muscle cell (VSMC) calcification induced by high glucose (HG, 25 mmol/L). Compared with low glucose, HG-induced VSMC calcification, and PPARγ mRNA, protein level was decreased. Troglitazone and rosiglitazone treatment markedly attenuated the VSMC calcification, whereas PPARγ antagonist GW9662 abolished the effect of rosiglitazone on calcification. Pretreatment of VSMCs with rosiglitazone, but not troglitazone, restored the loss of lineage marker expression: the protein levels of α-actin and SM-22α were increased 52 % (P < 0.05) and 53.1 % (P < 0.01), respectively, as compared with HG alone. Troglitazone and rosiglitazone reversed the change in bone-related protein expression induced by HG: decreased the mRNA levels of osteocalcin, bone morphogenetic protein 2 (BMP2), and core binding factor α 1 (Cbfα-1) by 26.9 % (P > 0.05), 50.0 % (P < 0.01), and 24.4 % (P < 0.05), and 48.4 % (P < 0.05), 41.4 % (P < 0.01) and 56.2 % (P < 0.05), respectively, and increased that of matrix Gla protein (MGP) 84.2 % (P < 0.01) and 70.0 %, respectively (P < 0.05), as compared with HG alone. GW9662 abolished the effect of rosiglitazone on Cbfα-1 and MGP expression. PPARγ ligands can inhibit VSMCs calcification induced by high glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rydén, L. (2008). What are the risk factors for progression of coronary artery calcification in patients with type 2 diabetes? Nature Clinical Practice Cardiovascular Medicine, 5, 370–381.

    Article  PubMed  Google Scholar 

  2. Chen, N. X., Duan, D., O’Neill, K. D., & Moe, S. M. (2006). High glucose increases the expression of Cbfa1 and BMP-2 and enhances the calcification of vascular smooth muscle cells. Nephrology, Dialysis, Transplantation, 21, 3435–3442.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, C. C., Sorribas, V., Sharma, G., Levi, M., & Draznin, B. (2007). Insulin attenuates vascular smooth muscle calcification but increases vascular smooth muscle cell phosphate transport. Atherosclerosis, 195, e65–e75.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, B. H., Jiang, D. Y., & Tang, L. S. (2006). Advanced glycation end-products induce apoptosis involving the signaling pathways of oxidative stress in bovine retinal pericytes. Life Sciences, 79, 1040–1048.

    Article  PubMed  CAS  Google Scholar 

  5. Kumeda, Y., Inaba, M., Shoji, S., Ishimura, E., Inariba, H., Yabe, S., et al. (2008). Significant correlation of glycated albumin, but not glycated haemoglobin, with arterial stiffening in haemodialysis patients with type 2 diabetes. Clinical Endocrinology (Oxf), 69, 556–561.

    Article  CAS  Google Scholar 

  6. Qiao, J. H., Mertens, R. B., Fishbein, M. C., & Geller, S. A. (2003). Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: morphologic evidence of enchondral ossification. Human Pathology, 34, 402–407.

    Article  PubMed  CAS  Google Scholar 

  7. Ishimura, E., Okuno, S., Kitatani, K., Maekawa, K., Izumotani, T., Yamakawa, T., et al. (2004). C-reactive protein is a significant predictor of vascular calcification of both aorta and hand arteries. Seminars in Nephrology, 24, 408–412.

    Article  PubMed  Google Scholar 

  8. The Diabetes Control and Complications Trial Research Group. (1995). Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. American Journal of Cardiology, 75, 894–903.

    Article  Google Scholar 

  9. Nathan, D. M., Lachin, J., Cleary, P., Orchard, T., Brillon, D. J., Backlund, J. Y., et al. (2003). Intensive diabetes therapy and carotid intima-media thickness in type 1 diabetes mellitus. New England Journal of Medicine, 348, 2294–2303.

    Article  PubMed  Google Scholar 

  10. Nathan, D. M., Cleary, P. A., Backlund, J. Y., Genuth, S. M., Lachin, J. M., Orchard, T. J., et al. (2005). Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New England Journal of Medicine, 353, 2643–2653.

    Article  PubMed  Google Scholar 

  11. Kliewer, S. A., Xu, H. E., Lambert, M. H., & Willson, T. M. (2001). Peroxisome proliferator-activated receptors: From genes to physiology. Recent Progress Hormone Research, 56, 239–263.

    Article  CAS  Google Scholar 

  12. Spiegelman, B. M. (1997). Peroxisome proliferator-activated receptor gamma: A key regulator of adipogenesis and systemic insulin sensitivity. European Journal of Medical Research, 2, 457–464.

    PubMed  CAS  Google Scholar 

  13. Ibrahimi, A., Teboul, L., Gaillard, D., Amri, E. Z., Ailhaud, G., Young, P., et al. (1994). Evidence for a common mechanism of action for fatty acids and thiazolidinedione antidiabetic agents on gene expression in preadipose cells. Molecular Pharmacology, 46, 1070–1076.

    PubMed  CAS  Google Scholar 

  14. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M., & Kliewer, S. A. (1995). An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). Journal of Biological Chemistry, 270, 12953–12956.

    Article  PubMed  CAS  Google Scholar 

  15. Marx, N., Bourcier, T., Sukhova, G. K., Libby, P., & Plutzky, J. (1999). PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 546–551.

    Article  PubMed  CAS  Google Scholar 

  16. Law, R. E., Goetze, S., Xi, X. P., Jackson, S., Kawano, Y., Demer, L., et al. (2000). Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation, 101, 1311–1318.

    Article  PubMed  CAS  Google Scholar 

  17. Takano, H., & Komuro, I. (2009). Peroxisome proliferator-activated receptor gamma and cardiovascular diseases. Circulation Journal, 73, 214–220.

    Article  PubMed  CAS  Google Scholar 

  18. Sugawara, A., Uruno, A., Kudo, M., Matsuda, K., Yang, C. W., & Ito, S. (2010). Effects of PPARγ on hypertension, atherosclerosis, and chronic kidney disease. Endocrine Journal, 57, 847–852.

    Article  PubMed  CAS  Google Scholar 

  19. Stunes, A. K., Westbroek, I., Gustafsson, B. I., Fossmark, R., Waarsing, J. H., Eriksen, E. F., et al. (2011). The peroxisome proliferator-activated receptor (PPAR) alpha agonist fenofibrate maintains bone mass, while the PPAR gamma agonist pioglitazone exaggerates bone loss, in ovariectomized rats. BMC Endocrine Disorders, 26(11), 11.

    Article  Google Scholar 

  20. Syversen, U., Aune, G., & Thommesen, L. (2003). PPAR-Alpha agonists increase bone mineral density in female rats. Abstract at ASBMR 25th Annual Meeting Minneapolis, Minnesota, USA.

  21. Syversen, U., Stunes, A.K., Gustafsson, B.I., Obrant, K.J., Nordsletten, L., Berge, R., et al. (2009). Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone. BMC Endocrine Disorder, 9, 10. doi:10.1186/1472-6823-9-10.

  22. Schwartz, A. V., Sellmeyer, D. E., Vittinghoff, E., Palermo, L., Lecka-Czernik, B., Feingold, K. R., et al. (2006). Thiazolidinedione use and bone loss in older diabetic adults. Journal of Clinical Endocrinology and Metabolism, 91, 3349–3354.

    Article  PubMed  CAS  Google Scholar 

  23. Yaturu, S., Bryant, B., & Jain, S. K. (2007). Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care, 30, 1574–1576.

    Article  PubMed  CAS  Google Scholar 

  24. Grey, A., Bolland, M., Gamble, G., Wattie, D., Horne, A., Davidson, J., et al. (2007). The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. Journal of Clinical Endocrinology and Metabolism, 92, 1305–1310.

    Article  PubMed  CAS  Google Scholar 

  25. Abedin, M., Lim, J., Tang, T. B., Park, D., Demer, L. L., & Tintut, Y. (2006). N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circulation Research, 98, 727–729.

    Article  PubMed  CAS  Google Scholar 

  26. Gaillard, V., Casellas, D., Seguin-Devaux, C., Schohn, H., Dauça, M., Atkinson, J., et al. (2005). Pioglitazone improves aortic wall elasticity in a rat model of elastocalcinotic arteriosclerosis. Hypertension, 46, 372–379.

    Article  PubMed  CAS  Google Scholar 

  27. Yu, J., Jin, N., Wang, G., Zhang, F., Mao, J., & Wang, X. (2007). Peroxisome proliferator-activated receptor gamma agonist improves arterial stiffness in patients with type 2 diabetes mellitus and coronary artery disease. Metabolism, 56, 1396–1401.

    Article  PubMed  CAS  Google Scholar 

  28. Paulik, M. A., & Lenhard, J. M. (1997). Thiazolidinediones inhibit alkaline phosphatase activity while increasing expression of uncoupling protein, and increasing mitochondrial mass in C3H10T1/2 cells. Cell and Tissue Research, 290, 79–87.

    Article  PubMed  CAS  Google Scholar 

  29. Fu, M., Zhang, J., Lin, Y. Y., Zhu, X., Willson, T. M., & Chen, Y. E. (2002). Activation of peroxisome proliferator-activated receptor gamma inhibits osteoprotegerin gene expression in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications, 294, 597–601.

    Article  PubMed  CAS  Google Scholar 

  30. Mbalaviele, G., Abu-Amer, Y., Meng, A., Jaiswal, R., Beck, S., Pittenger, M. F., et al. (2000). Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. Journal of Biological Chemistry, 275, 14388–14393.

    Article  PubMed  CAS  Google Scholar 

  31. Khan, E., & Abu-Amer, Y. (2003). Activation of peroxisome proliferator-activated receptor-gamma inhibits differentiation of preosteoblasts. Journal of Laboratory and Clinical Medicine, 142, 29–34.

    Article  PubMed  CAS  Google Scholar 

  32. Shioi, A., Nishizawa, Y., Jono, S., Koyama, H., Hosoi, M., & Morii, H. (1995). Betaglycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 2003–2009.

    Article  PubMed  CAS  Google Scholar 

  33. Zhou, Y. B., Jin, S. J., Cai, Y., Teng, X., Chen, L., Tang, C. S., et al. (2009). Lanthanum acetate inhibits vascular calcification induced by vitamin D3 plus nicotine in rats. Experimental Biology and Medicine, 234, 908–917.

    Article  PubMed  CAS  Google Scholar 

  34. Sodhi, C. P., Phadke, S. A., Batlle, D., & Sahai, A. (2001). Hypoxia stimulates osteopontin expression and proliferation of cultured vascular smooth muscle cells: Potentiation by high glucose. Diabetes, 50, 1482–1490.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson, R. C., Leopold, J. A., & Loscalzo, J. (2006). Vascular calcification: Pathobiological mechanisms and clinical implications. Circulation Research, 99, 1044–1059.

    Article  PubMed  CAS  Google Scholar 

  36. Shao, J. S., Cai, J., & Towler, D. A. (2006). Molecular mechanisms of vascular calcification: Lessons learned from the aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1423–1430.

    Article  PubMed  CAS  Google Scholar 

  37. Demer, L. L., & Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation, 117, 2938–2948.

    Article  PubMed  Google Scholar 

  38. Steitz, S. A., Speer, M. Y., Curinga, G., Yang, H. Y., Haynes, P., Aebersold, R., et al. (2001). Smooth muscle cell phenotypic transition associated with calcification: Upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circulation Research, 89, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  39. Okura, T., Kurata, M., Enomoto, D., Jotoku, M., Nagao, T., Desilva, V. R., et al. (2010). Undercarboxylated osteocalcin is a biomarker of carotid calcification in patients with essential hypertension. Kidney Blood Pressure Research, 33, 66–71.

    Article  PubMed  Google Scholar 

  40. Shimizu, T., Tanaka, T., Iso, T., Matsui, H., Ooyama, Y., Kawai-Kowase, K., et al. (2011). Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. Journal of Biological Chemistry, 286, 19138–19148.

    Article  PubMed  CAS  Google Scholar 

  41. Engelse, M. A., Neele, J. M., Bronckers, A. L., Pannekoek, H., & de Vries, C. J. (2001). Vascular calcification: expression patterns of the osteoblast-specific gene core binding factor alpha-1 and the protective factor matrix gla protein in human atherogenesis. Cardiovascular Research, 52, 281–289.

    Article  PubMed  CAS  Google Scholar 

  42. Atkins, K. B., Northcott, C. A., Watts, S. W., & Brosius, F. C. (2005). Effects of PPAR-gamma ligands on vascular smooth muscle marker expression in hypertensive and normal arteries. American Journal of Physiology Heart Circulatory Physiology, 288, H235–H243.

    Article  PubMed  CAS  Google Scholar 

  43. Luo, G., Ducy, P., McKee, M. D., Pinero, G. J., Loyer, E., Behringer, R. R., et al. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature, 386, 78–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30770869, 30871013 to YF Qi).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding-Qiong Peng or Yong-Fen Qi.

Additional information

Ye-Bo Zhou and Jing Zhang contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YB., Zhang, J., Peng, DQ. et al. Peroxisome Proliferator-Activated Receptor γ Ligands Retard Cultured Vascular Smooth Muscle Cells Calcification Induced by High Glucose. Cell Biochem Biophys 66, 421–429 (2013). https://doi.org/10.1007/s12013-012-9490-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9490-7

Keywords

Navigation