Skip to main content

Advertisement

Log in

Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Although doxorubicin (Dox) is a backbone of chemotherapy, the search for an effective and safe therapy to revoke Dox-induced acute cardiotoxicity remains a critical matter in cardiology and oncology. The current study was the first to explore the probable protective effects of native and gamma-irradiated fractions with bradykinin-potentiating activity (BPA) isolated from scorpion (Leiurus quinquestriatus) venom against Dox-induced acute cardiotoxicity in rats. Native or irradiated fractions (1 μg/g) were administered intraperitoneally (i.p.) twice per week for 3 weeks, and Dox (15 mg/kg, i.p.) was administered on day 21 at 1 h after the last native or irradiated fraction treatment. Electrocardiographic (ECG) aberrations were ameliorated in the Dox-treated rats pretreated with the native fraction, and the irradiated fraction provided greater amelioration of ECG changes than that of the native fraction. The group pretreated with native protein with BPA also exhibited significant improvements in the levels of oxidative stress-related, inflammatory, angiogenic, fibrogenic, and apoptotic markers compared with those of the Dox group. Notably, the irradiated fraction restored these biomarkers to their normal levels. Additionally, the irradiated fraction ameliorated Dox-induced histological changes and alleviated the severity of cardiac injury to a greater extent than that of the native fraction. In conclusion, the gamma-irradiated detoxified fraction of scorpion venom elicited a better cardioprotective effect than that of the native fraction against Dox-induced acute cardiotoxicity in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Pennington, M. W., Czerwinski, A., & Norton, R. S. (2018). Peptide therapeutics from venom: Current status and potential. Bioorganic & Medicinal Chemistry, 26, 2738–2758.

    CAS  Google Scholar 

  2. Ferreira, S. H. A. (1965). A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British Journal of Pharmacology and Chemotherapy, 24(1), 163–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cushman, D. W., & Ondetti, M. A. (1991). History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension, 17(4), 589–592.

    CAS  PubMed  Google Scholar 

  4. Fernandez, J. H., Neshich, G., & Camargo, A. C. (2004). Using bradykinin-potentiating peptide structures to develop new antihypertensive drugs. Genetics and Molecular Research, 3(4), 554–563.

    CAS  PubMed  Google Scholar 

  5. Dendorfer, A., Wolfrum, S., & Dominiak, P. (1999). Pharmacology and cardiovascular implications of the kinin-kallikrein system. Japanese Journal of Pharmacology., 79(4), 403–426.

    CAS  PubMed  Google Scholar 

  6. Sciani, J. M., & Pimenta, D. C. (2017). The modular nature of bradykinin potentiating peptides isolated from snake venoms. Journal of Venomous Animals and Toxins including Tropical Diseases, 23, 45.

    Google Scholar 

  7. Verano-Braga, T., Rocha-Resende, C., Silva, D. M., Ianzer, D., Martin-Eauclaire, M. F., Bougis, P. E., et al. (2008). Tityus serrulatus hypotensins: A new family of peptides from scorpion venom. Biochemical and Biophysical Research Communications, 371(3), 515–520.

    CAS  PubMed  Google Scholar 

  8. Conceição, K., Konno, K., de Melo, R. L., Antoniazzi, M. M., Jared, C., Sciani, J. M., et al. (2007). Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis. Peptides, 28(3), 515–523.

    PubMed  Google Scholar 

  9. Chi, C. W., Wang, S. Z., Lg, X., Wang, M. Y., Lo, S. S., & Huang, W. D. (1985). Structure-function studies on the bradykinin potentiating peptide from Chinese snake venom (Agkistrodon halys Pallas). Peptides, 6(3), 339–342.

    CAS  PubMed  Google Scholar 

  10. Cintra, A. C., Vieira, C. A., & Giglio, J. R. (1990). Primary structure and biological activity of bradykinin potentiating peptides from Bothrops insularis snake venom. Journal of Protein Chemistry., 9(2), 221–227.

    CAS  PubMed  Google Scholar 

  11. Gomes, C. L., Konno, K., Conceicao, I. M., Ianzer, D., Yamanouye, N., Prezoto, B. C., et al. (2007). Identification of novel bradykinin-potentiating peptides (BPPs) in the venom gland of a rattlesnake allowed the evaluation of the structure-function relationship of BPPs. Biochemical Pharmacology., 74(9), 1350–1360.

    CAS  PubMed  Google Scholar 

  12. Zeng, X. C., Corzo, G., & Hahin, R. (2005). Scorpion venom peptides without disulfide bridges. IUBMB Life, 1, 13–21.

    Google Scholar 

  13. Zhijian, C., Feng, L., Yingliang, W., Xin, M., & Wenxin, L. (2006). Genetic mechanisms of scorpion venom peptide diversification. Toxicon, 47, 348–355.

    PubMed  Google Scholar 

  14. Camargo, A. C., Ianzer, D., Guerreiro, J. R., & Serrano, S. M. (2012). Bradykinin-potentiating peptides: Beyond captopril. Toxicon, 59, 516–523.

    CAS  PubMed  Google Scholar 

  15. Ortiz, E., Gurrola, G. B., Schwartz, E. F., & Possani, L. D. (2015). Scorpion venom com-ponents as potential candidates for drug development. Toxicon, 93, 125–135.

    CAS  PubMed  Google Scholar 

  16. Amra, E. A., Lashein, F. M., Seleem, A. A., & Badr, A. H. (2018). Counter effect of bee venom and its extracted bradykinin-potentiating factor on acrylamide and chips administration induced complications in the liver and kidney of male mice. The Journal of Basic and Applied Zoology., 79, 34.

    Google Scholar 

  17. Lipps, B. V. (1998). Biological and immunological properties of nerve growth factor from snake venom. Journal of Natural Toxins., 7, 121–130.

    CAS  PubMed  Google Scholar 

  18. Guo, L. Y., Zhu, J. F., & Wu, X. F. (1999). Cloning of a cDNA encoding a nerve growth factor precursor from the Agkistrodon halys Pallas. Toxicon, 37, 465–470.

    CAS  PubMed  Google Scholar 

  19. Nassar, A. Y., Abu Sinna, G., & Abd-El-Rahim, S. A. (1990). Effect of a bradykinin potentiating fraction isolated from venom of the Egyptian scorpion, Buthus occitanus on the ovaries and endometrium of mice. Toxicon, 28(5), 525–534.

    CAS  PubMed  Google Scholar 

  20. Bekheet, S. H. M., Awadallaa, E. A., Salman, M. M. A., & Hassan, M. K. (2011). Bradykinin potentiating factor isolated from Buthus occitanus venom has a protective effect against cadmium-induced rat liver and kidney damage. Journal of Tissue and Cell., 43, 337–343.

    CAS  PubMed  Google Scholar 

  21. El-Saadani, M. A. (2004). A scorpion venom peptide fraction induced prostaglandin biosynthesis in guinea pig kidneys: Incorporation of 14C-linoleic acid. Journal of Biochemistry., 135, 109–116.

    CAS  PubMed  Google Scholar 

  22. Meki, A. M. A., & Omar, H. M. A. (1997). Bradykinin potentiating fraction isolated from the venom of Egyptian scorpion Buthus occitanus induced prostaglandin biosynthesis in female guinea pigs. Comparative Biochemistry & Physiology., 116(3), 183–189.

    Google Scholar 

  23. Nassar, A. Y., Abu-Sinna, G., Abdel Rahim, S., Soliman, M., & El-Saadani, M. (1992). Bradykinin potentiating fraction isolated from venom of Buthus occitanus promotes spermatogenesis in premature mice. Rec Advantage Toxinology and Research, 2, 119–135.

    Google Scholar 

  24. Takemura, G., & Fujiwara, H. (2007). Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Progress in Cardiovascular Diseases, 49, 330–352.

    CAS  PubMed  Google Scholar 

  25. Sant, M., Allemani, C., & Santaquilani, M. (2009). Survival of cancer patients diagnosed in 1995–1999. Results and commentary. European Journal of Cancer., 45(6), 931–991.

    PubMed  Google Scholar 

  26. Chang, W. T., Li, J., Haung, H. H., Liu, H., & Han, M. (2011). Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation. Journal of Cellular and Biochemistry, 112, 2873–2881.

    CAS  Google Scholar 

  27. Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.

    CAS  PubMed  Google Scholar 

  28. Sawyer, D. B., Peng, X., Chen, B., Pentassuglia, L., & Lim, C. C. (2010). Mechanisms of anthracycline cardiac injury: Can we identify strategies for cardioprotection? Progress in Cardiovascular Diseases, 53, 105–113.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott, J. M., Khakoo, A., Mackey, J. R., Haykowsky, M. J., & Douglas, P. S. (2011). Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: Current evidence and underlying mechanisms. Circulation, 124, 642–650.

    PubMed  PubMed Central  Google Scholar 

  30. Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.

    CAS  PubMed  Google Scholar 

  31. Swain, S. M., Whaley, F. S., & Ewer, M. S. (2003). Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer, 97, 2869–2879.

    CAS  PubMed  Google Scholar 

  32. Nebigil, C. G., & Désaubry, L. (2018). Updates in anthracycline-mediated cardiotoxicity. Frontiers in Pharmacology, 9, 1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Danz, E. D., Skramsted, J., Henry, N., Bennett, J. A., & Keller, R. S. (2009). Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway. Free Radical Biology and Medicine., 46, 1589–1597.

    PubMed  Google Scholar 

  34. Chang, H. M., Moudgil, R., Scarabelli, T., Okwuosa, T. M., & Yeh, E. T. H. (2017). Cardiovascular complications of cancer therapy: Best practices in diagnosis, prevention, and management: Part 1. Journal of American College of Cardiology., 70(20), 2536–2551.

    Google Scholar 

  35. El-Demerdash, E., Ali, A. A., Sayed-Ahmed, M. M., & Osman, A. M. (2003). New aspects in probucol cardioprotection against doxorubicin-induced cardiotoxicity. Cancer Chemotherapy and Pharmacology., 52(5), 411–416.

    PubMed  Google Scholar 

  36. Silva dos Santos, D., & Goldenberg, R. C. (2018). Doxorubicin-induced cardiotoxicity: From mechanisms to development of efficient therapy. In Cardiotoxicity. Intechopen.

  37. Bosch, X., Rovira, M., Sitges, M., Domènech, A., Ortiz-Pérez, J. T., de Caralt, T. M., et al. (2013). Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The overcome trial (prevention of left ventricular dysfunction with Enalapril and carvedilol in patients submitted to intensive Chemotherapy for the treatment of Malignant hemopathies). Journal of American College of Cardiology., 61, 2355–2362.

    CAS  Google Scholar 

  38. Ibrahim, M. A., Ashour, O. M., Ibrahim, Y. F., El-Bitar, H. I., Gomaa, W., & Abdel-Rahim, S. R. (2009). Angiotensin-converting enzyme inhibition and angiotensin AT(1)-receptor antagonism equally improve doxorubicin-induced cardiotoxicity and nephrotoxicity. Pharmacological Research., 60, 373–381.

    CAS  PubMed  Google Scholar 

  39. Blaes, A. H., Gaillard, P., Peterson, B. A., Yee, D., & Virnig, B. (2010). Angiotensin converting enzyme inhibitors may be protective against cardiac complications following anthracycline chemotherapy. Breast Cancer Research Treatment., 122, 585–590.

    CAS  PubMed  Google Scholar 

  40. Morris, S. D., & Yellon, D. M. (1997). Angiotensin-converting enzyme inhibitors potentiate preconditioning through Bradykinin B2 Receptor activation in human heart. JACC., 29(7), 1599–1606.

    CAS  PubMed  Google Scholar 

  41. Caproni, P., Baptista, J. A., de Almeida, T. L., Passos, L. A. C., & Nascimento, N. (2009). Study of irradiated bothropstoxin-1 with 60Co gamma rays: Immune system behavior. Journal of Venomous Animals and Toxins including Tropical Diseases., 15(2), 216–225.

    CAS  Google Scholar 

  42. Oliveira, K. C., Spencer, P. J., Ferreira, R. S., & Nascimento, N. (2015). New insights into the structural characteristics of irradiated crotamine. Journal of Venomous Animals and Toxins including Tropical Diseases., 21, 14.

    Google Scholar 

  43. Nascimento, N., Seebart, C. S., Francis, B., Rogero, J. R., & Kaiser, I. I. (1996). Influence of ionizing radiation on crotoxin: Biochemical and immunological aspects. Toxicon, 34(1), 123–131.

    PubMed  Google Scholar 

  44. Clissa, B. P., Nascimento, N. D., & Rogero, J. R. (1999). Toxicity and immunogenicity of Crotalus durissus terrificus venom treated with different doses of gamma rays. Toxicon, 37, 1131–1141.

    CAS  PubMed  Google Scholar 

  45. Baptista, N. B., Saidemberg, D. M., de Souza, B. M., Cesar-Tognoli, L. M., Ferreira, V. M., Mendes, M. A., et al. (2010). Pro-tonectin (1–6): A novel chemotactic peptide from the venom of the social was Agelaia pallipes pallipes. Toxicon, 56, 880–889.

    Google Scholar 

  46. Yaqoob, R., Tahir, H. M., Arshad, M., Naseem, S., & Ahsan, M. M. (2016). Optimization of the conditions for maximum recovery of venom from scorpions by electrical stimulation. Pakistan Journal of Zoology., 48, 265–269.

    Google Scholar 

  47. Meier, J., & Theakston, R. D. C. (1986). Approximate LD50 determinations of snake venoms using eight to ten experimental animals. Toxicon, 24, 345–401.

    Google Scholar 

  48. Casare, M. S., Baptista, J. A., Spencer, P. J., & Nascimento, N. (2004). Effects of 60Co radiation on the molecular strucure of crotamine. Radiation Physics and Chemistry, 71, 417–418.

    Google Scholar 

  49. Zordoky, B. N. M., Mohamed, A. A., Aboutabl, M. E., & El-Kadi, A. O. S. (2011). Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology., 242, 38–46.

    Google Scholar 

  50. Ashry, O., Moustafa, M., Baset, A. A. E., Abu Sinna, G. E., & Farouk, H. (2012). Outcome of venom bradykinin potentiating factor on rennin-angiotensin system in irradiated rats. International Journal of Radiation Biology, 88(11), 840–845.

    CAS  PubMed  Google Scholar 

  51. Pacher, P., Liaudet, L., Bai, P., Mabley, J. G., Kaminski, P. M., Virág, L., et al. (2003). Potent Metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation, 107(6), 896–904.

    CAS  PubMed  Google Scholar 

  52. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  PubMed  Google Scholar 

  53. Ahmed, L. A., Shehata, N. I., Abdelkader, N. F., & Khattab, M. M. (2014). Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice. PLoS ONE, 9, e108889.

    PubMed  PubMed Central  Google Scholar 

  54. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC (T)) method. Methods, 25, 402–408.

    CAS  Google Scholar 

  55. Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bancroft, J. H. D., Stevens, A., & Turner, D. R. (1990). Theory and practice of histological techniques. In Bancroft, J. D., Stevens, A., & Turner, D. R. (Eds.). 3th ed. (p. 726) London, Melbourne and New York: Churchill Livingstone Edinburg.

  57. Acikel, M., Buyukokuroglu, M. E., Erdogan, F., Aksoy, H., Bozkurt, E., & Senocak, H. (2005). Protective effects of dantrolene against myocardial injury induced by isoproterenol in rats: Biochemical and histological findings. International Journal of Cardiology., 98(3), 389–394.

    PubMed  Google Scholar 

  58. Ammar, E. M., Said, S. A., Suddek, G. M., & El Damarawy, S. L. (2011). Amelioration of doxorubicin-induced cardiotoxicity by deferiprone in rats. Canadian Journal of Physiology and Pharmacology, 89, 269–276.

    CAS  Google Scholar 

  59. Koti, B. C., Nagathan, S., Vishwanathswamy, A., Gadad, P. C., & Thippeswamy, A. (2013). Cardioprotective effect of vedic guard against doxorubicin-induced cardiotoxicity in rats: A biochemical, electrocardiographic and histopathological study. Pharmacognosy Magazine, 9(34), 176–181.

    PubMed  PubMed Central  Google Scholar 

  60. Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in Wistar rats. Journal of Acute Medicine., 5, 1–8.

    Google Scholar 

  61. Emeka, P. M., & Al-Ahmed, A. (2017). Effect of metformin on ECG, HR and BP of rats administered with cardiotoxic agent doxorubicin. International Journal of Basic & Clinical Pharmacology., 6(5), 1054–1059.

    Google Scholar 

  62. Sun, X. P., Wan, L., Yang, Q. J., Huo, Y., Han, Y. L., & Arch, C. G. (2017). Scutellarin protects against doxorubicin-induced acute cardiotoxicity and regulates its accumulation in the heart. Pharmaceutical Research., 40, 875–883.

    CAS  Google Scholar 

  63. Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology and Toxicology., 19, 3.

    PubMed  Google Scholar 

  64. Henri, C., Heinonen, T., & Tardif, J. C. (2016). The role of biomarkers in decreasing risk of cardiac toxicity after cancer therapy. Biomarkers in Cancer., 8(S2), 39–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao, V. A. (2013). Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxidants & Redox Signaling., 18(8), 930–955.

    CAS  Google Scholar 

  66. Abu Gazia, M., & Abu El-Magd, M. (2018). Ameliorative effect of cardamom aqueous extract on doxorubicin-induced cardiotoxicity in rats. Cells Tissues Organs., 206(1–2), 62–72.

    CAS  PubMed  Google Scholar 

  67. Ciaccio, M., Valenza, M., Tesoriere, L., Bongiorno, A., Albiero, R., & Livrea, M. A. (1993). Vitamin A inhibits doxorubicin-induced membrane lipid peroxidation in rat tissues in vivo. Archives of Biochemistry and Biophysics., 302, 103–108.

    CAS  PubMed  Google Scholar 

  68. Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenbur, C. (2002). Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research., 62(16), 4592–4598.

    CAS  PubMed  Google Scholar 

  69. Mikrut, K., Paluszak, J., Kozlik, J., Sosnowski, P., Krauss, H., & Grześkowiak, E. (2001). The effect of bradykinin on the oxidative state of rats with acute hyperglycaemia. Diabetes Research and Clinical Practice, 51, 79–85.

    CAS  PubMed  Google Scholar 

  70. Sancho-Bru, P., Bataller, R., Fernandez-Varo, G., Moreno, M., Ramalho, L. N., Colmenero, J., et al. (2007). Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology, 133(6), 2019–2028.

    CAS  PubMed  Google Scholar 

  71. Oeseburg, H., Iusuf, D., Harst, P., Gilst, W. H., Henning, R. H., & Roks, A. J. (2009). Bradykinin protects against oxidative stress–induced endothelial cell senescence. Hypertension, 53, 417–422.

    CAS  PubMed  Google Scholar 

  72. Cappetta, D., De Angelis, A., Sapio, L., Prezioso, L., Illiano, M., & Quaini, F., et al. (2017). Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxidative Medicine and Cellular Longevity. 15210202017.

  73. Rocca, C., Pasqua, T., Cerra, M. C., & Angelone, T. (2020). Cardiac damage in anthracyclines therapy: Focus on oxidative stress and inflammation. Antioxidants and Redox Signaling., 32(15), 1081–1097.

    CAS  PubMed  Google Scholar 

  74. Yadav, U., & Ramana, K. V. (2013). Regulation of NF-κB- induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxidative Medicine and Cellular Longevity., 690545, 11.

    Google Scholar 

  75. Djavaheri-Mergny, M., Javelaud, D., Wietzerbin, J., & Besançon, F. (2004). NF-kappa B activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNF alpha treated Ewing sarcoma cells. FEBS Letters., 578, 111–115.

    CAS  PubMed  Google Scholar 

  76. Lingappan, K. (2018). NF-κB in oxidative stress. Current in Opinion Toxicology., 7, 81–86.

    Google Scholar 

  77. Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicological Letters., 121, 151–157.

    CAS  Google Scholar 

  78. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews., 56, 185–229.

    CAS  PubMed  Google Scholar 

  79. Sun, Z., Yan, B., YanYu, W., Yao, X., Ma, X., Sheng, G., et al. (2016). Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Experimental and Therapeutic Medicine., 12, 1879–1884.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Abdel-Wahab, B. A., & Metwally, M. E. (2014). Clozapine-induced cardiotoxicity in rats: Involvement of tumor necrosis factor alpha, NF-Kβ and caspase-3. Toxicological Reports, 20(1), 1213–1223.

    Google Scholar 

  81. Kong, P., Christia, P., & Frangogiannis, N. G. (2014). The pathogenesis of cardiac fibrosis. Cellular and Molecular Life Sciences., 71(4), 549–574.

    CAS  PubMed  Google Scholar 

  82. Bujak, M., & Frangogiannis, N. G. (2007). The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovascular Research., 74(2), 184–195.

    CAS  PubMed  Google Scholar 

  83. Chen, C. T., Wang, Z. H., Hsu, C. C., Lin, H. H., & Chen, J. H. (2015). In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients., 7, 4938–4954.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Beckman, S. A., Chen, W. C., Tang, Y., Proto, J. D., Mlakar, L., Wang, B., et al. (2013). Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology., 33, 2004–2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Attia, G. M., & El mansy RA and Algaidi SA,. (2017). Silymarin decreases the expression of VEGF-A, iNOS and caspase-3 and preserves the ultrastructure of cardiac cells in doxorubicin induced cardiotoxicity in rats: A possible protective role. International Journal of Clinical Medicine., 10(2), 4158–4173.

    CAS  Google Scholar 

  86. Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology., 113, 158–166.

    CAS  Google Scholar 

  87. Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., & Freeman, B. A. (2001). Endothelial regulation of vasomotion in apoE-deficient mice: Implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation, 103, 1282–1288.

    CAS  PubMed  Google Scholar 

  88. Mungrue, I. N., Gros, R., You, X., Pirani, A., Azad, A., & Csont, T. (2002). Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death. Journal of Clinical Investigation, 109, 735–743.

    CAS  Google Scholar 

  89. Abbas, N. A. T., & Kabil, S. L. (2017). Pentoxifylline and cilostazol against rat heart injuries induced by doxorubicin. Egyptian Journal of Basic and Clinical Pharmacology., 7(1), 47–56.

    Google Scholar 

  90. Yu, J., Gao, H., Wu, C., Xu, Q. M., Lu, I. D. J. J., & Chen, X. (2018). Diethyl Blechnic, a novel natural product isolated from salvia miltiorrhiza bunge, inhibits doxorubicin-induced apoptosis by inhibiting ROS and activating JNK1/2. International Journal of Molecular Sciences, 19, 1809.

    PubMed Central  Google Scholar 

  91. Mantawy, E. M., Esmat, A., El-Bakly, W. M., Salah ElDin, R. A., & El-Demerdash, E. (2017). Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53 MAPK and AKT pathways. Science Reports, 7, 4795.

    Google Scholar 

  92. Salman, M. M., Kotb, A. M., Haridy, M. A., & Hammad, S. (2016). Hepato-and nephroprotective effects of bradykinin potentiating factor from scorpion (Buthusoccitanus) venom on mercuric chloride-treated rats. EXCLI Journal, 15, 807–816.

    PubMed  PubMed Central  Google Scholar 

  93. Dong, R., Xu, X., Li, G., Feng, W., Zhao, G., Zhao, J., et al. (2013). Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via regulating redox state. PLoS ONE, 8(10), e77034.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ďurackova, Z. (2014). Free radicals and antioxidants for non-experts. In I. Laher (Ed.), Systems biology of free radicals and antioxidants (1st ed., pp. 3–38). Berlin: Springer.

    Google Scholar 

  95. Hagiwara, M., Murakami, H., Ura, N., Agata, J., Yoshida, H., & Higashiura, K. (2004). Renal protective role of bradykinin B1 receptor in stroke-prone spontaneously hypertensive rats. Hypertension and Research., 27, 399–408.

    CAS  Google Scholar 

  96. Yoshihisa, M., Katsuya, H., Junji, N., Tomio, S., & Hideo, K. (2004). Endothelial dysfunction and altered bradykinin response due to oxidative stress induced by serum deprivation in the bovine cerebral artery. European Journal of Pharmacology., 491(1), 53–60.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Faculty of Pharmacy, Cairo University, and the Atomic Energy Authority for cooperation. The authors are also grateful to Prof. Dr. Ahmed Othman, Faculty of Veterinary Medicine, Cairo University, for his efforts in the histopathological examinations.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

LAA, FYA and AAA conceived and designed research. LAA, FYA and AAE conducted experiments. LAA, EAS and FYA analyzed data. LAA and FYA wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lamiaa A. Ahmed.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical Approval

All procedures performed in this study were conducted in accordance with the regulations approved by the Ethics Committee at Faculty of Pharmacy, Cairo University (permit number:1776). The investigation complied with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 2011).

Additional information

Handling editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, L.A., Abdou, F.Y., El Fiky, A.A. et al. Bradykinin-Potentiating Activity of a Gamma-Irradiated Bioactive Fraction Isolated from Scorpion (Leiurus quinquestriatus) Venom in Rats with Doxorubicin-Induced Acute Cardiotoxicity: Favorable Modulation of Oxidative Stress and Inflammatory, Fibrogenic and Apoptotic Pathways. Cardiovasc Toxicol 21, 127–141 (2021). https://doi.org/10.1007/s12012-020-09602-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09602-5

Keywords

Navigation