Skip to main content

Advertisement

Log in

Cardioprotective Effect of Paricalcitol on Amitriptyline-Induced Cardiotoxicity in Rats: Comparison of [99mTc]PYP Cardiac Scintigraphy with Electrocardiographic and Biochemical Findings

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Taking an overdose of AMT, a commonly prescribed tricyclic antidepressant drug, has an increased risk of sudden cardiac death. The cardiotoxicity of amitriptyline (AMT) is a commonly observed toxicity with high morbidity and mortality rates in emergency departments (ED). Nevertheless, there are still no effective treatment options for AMT-induced cardiotoxicity. The aim of the present study was to evaluate the effects of paricalcitol (PRC), a Vitamin D receptor agonist, using electrocardiographic (ECG), biochemical, and scintigraphic methods. Twenty-eight male Wistar rats were randomly divided into four groups: untreated control (CON), amitriptyline-induced cardiotoxicity (AMT), paricalcitol (PRC), and amitriptyline + paricalcitol (AMT + PRC). Cardiotoxicity was induced by intraperitoneal (i.p) injection of a single-dose AMT (100 mg/kg). PRC was administered as 10 μg/kg (i.p.) after the injection of AMT. We examined ECG, biochemical, and scintigraphic results of PRC administration on AMT-induced changes. Cardiotoxicity of AMT was characterized by conduction abnormalities (increased QRS complex, T wave, and QT interval duration and elevation of ST segment amplitude), elevated 99mTechnetium Pyrophosphate ([99mTc]PYP) uptake, and increased cardiac troponin T (cTnT) levels. Treatment with PRC significantly decreased all AMT-associated conduction abnormalities in ECG (p < 0.001), and decreased [99mTc]PYP uptake (p < 0.001) and serum cTnT level (p < 0.001). The present study indicated that the vitamin D receptor agonist paricalcitol could decrease the AMT-induced cardiotoxicity. This suggests [99mTc]PYP as a non-invasive method for the evaluation of myocardial injury induced by AMT. According to the results of the present study, PRC has beneficial effects on AMT-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kerr, G. W., McGuffie, A. C., & Wilkie, S. (2011). Tricyclic antidepressant overdose: A review. Emergency Medicine Journal,18(4), 236–241.

    Article  Google Scholar 

  2. Mills, K. (2005). Cylic Antidepressants. In J. Brent, K. L. Wallace, & K. K. Burkhart (Eds.), Critical care toxicology: diagnosis and management of the critically poisoned patient (pp. 475–484). Philadelphia: Elsevier Mosby.

    Google Scholar 

  3. Kiyan, S., Aksay, E., Yanturali, S., Atilla, R., & Ersel, M. (2006). Acute myocardial infarction associated with amitriptyline overdose. Basic & Clinical Pharmacology & Toxicology,98(5), 462–466.

    Article  CAS  Google Scholar 

  4. Guthrie, R. M., & Lott, J. A. (1986). Abnormal serum creatine kinase and MB fraction following an amitriptyline overdose. Journal of Family Practice,22(6), 554–555.

    Google Scholar 

  5. Kalkan, S., Aygoren, O., Akgun, A., et al. (2004). Do adenosine receptors play a role in amitriptyline-induced cardiovascular toxicity in rats? Journal of Toxicology—Clinical Toxicology,42(7), 945–954.

    Article  CAS  PubMed  Google Scholar 

  6. Holick, M. F. (2007). Vitamin D deficiency. New England Journal of Medicine,357(3), 266–281.

    Article  CAS  PubMed  Google Scholar 

  7. Aleksova, A., Belfiore, R., Carriere, C., et al. (2015). Vitamin D deficiency in patients with acute myocardial infarction: An Italian single-center study. International Journal for Vitamin and Nutrition Research,85(1–2), 23–30.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, J. L., May, H. T., Horne, B. D., et al. (2010). Intermountain heart collaborative (IHC) study group: Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. The American Journal of Cardiology,106, 963–968.

    Article  CAS  PubMed  Google Scholar 

  9. Yilmaz, O., Olgun, H., Ciftel, M., et al. (2015). Dilated cardiomyopathy secondary to rickets related hypocalcaemia: Eight case reports and a review of the literature. Cardiology in the Young,25(2), 261–266.

    Article  PubMed  Google Scholar 

  10. Polat, V., Bozcali, E., Uygun, T., et al. (2015). Low vitamin D status associated with dilated cardiomyopathy. International Journal of Clinical and Experimental Medicine,8(1), 1356–1362.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bae, S., Singh, S. S., Yu, H., et al. (2013). Vitamin D signaling pathway plays an important role in the development of heart failure after myocardial infarction. Journal of Applied Physiology,114(8), 979–987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gullestad, L., Ueland, T., Vinge, L. E., et al. (2012). Inflammatory cytokines in heart failure: Mediators and markers. Cardiology,122(1), 23–35.

    Article  CAS  PubMed  Google Scholar 

  13. Franczyk, A., Stolarz-Skrzypek, K., Wesołowska, A., & Czarnecka, D. (2014). Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovascular & Hematological Disorders: Drug Targets,14, 34–44.

    Article  CAS  Google Scholar 

  14. Gonzalez-Parra, E., Rojas-Rivera, J., Tuñón, J., et al. (2012). Vitamin D receptor activation and cardiovascular disease. Nephrology Dialysis Transplantation,27(4_Suppl), iv17–iv21.

    CAS  Google Scholar 

  15. Lund, R., Andress, D. L., Amdahl, M., et al. (2010). Differential effects of paricalcitol and calcitriol on intestinal calcium absorption in hemodialysis patients. American Journal of Nephrology,31(2), 165–170.

    Article  CAS  PubMed  Google Scholar 

  16. Basol, N., Aygun, H., & Gul, S. S. (2019). Beneficial effects of edaravone in experimental model of amitriptyline-induced cardiotoxicity in rats. Naunyn Schmiedebergs Arch Pharmacol.. https://doi.org/10.1007/s00210-019-01683-6.

    Article  PubMed  Google Scholar 

  17. Buschmann, G., Schumacher, W., Budden, R., & Kühl, U. G. (1980). Evaluation of the effect of dopamine and other catecholamines on the electrocardiogram and blood pressure of rats by means of on-line biosignal processing. Journal of Cardiovascular Pharmacology,2, 777–795.

    Article  CAS  PubMed  Google Scholar 

  18. Farraj, A. K., Hazari, M. S., & Cascio, W. E. (2011). The utility of the small rodent electrocardiogram in toxicology. Toxicological Sciences,121, 11–30.

    Article  CAS  PubMed  Google Scholar 

  19. Aygun, H., & Gul, S. S. (2019). Protective effect of melatonin and agomelatine on adriamycin-induced nephrotoxicity in rat model: A renal scintigraphy and biochemical study. Bratislava Medical Journal,120(2), 119–123.

    Article  Google Scholar 

  20. Aygun, H., & Gul, S. S. (2019). Protective effect of edaravone on adriamycin-induced cardiotoxicity in rats. Cumhuriyet Medical Journal,41(1), 10–18.

    CAS  Google Scholar 

  21. Arıcı, M. A., Buyukdeligoz, M., Kalkan, S., & Tuncok, Y. (2013). Effects of BQ-788 on amitriptyline-induced cardiovascular toxicity. Human and Experimental Toxicology,32(3), 316–322.

    Article  PubMed  CAS  Google Scholar 

  22. Basol, N., & Erbas, O. (2016). The effects of diltiazem and metoprolol in QTc prolongation due to amitriptyline intoxication. Human and Experimental Toxicology,35(1), 29–34.

    Article  CAS  PubMed  Google Scholar 

  23. Bora, S., Erdoğan, M. A., Yiğittürk, G., Erbaş, O., & Parlak, I. (2018). The effects of lipid emulsion, magnesium sulphate and metoprolol in amitriptyline-induced cardiovascular toxicity in rats. Cardiovascular Toxicology,18, 547–556.

    Article  CAS  PubMed  Google Scholar 

  24. Sorodoc, V., Sorodoc, L., Ungureanu, D., Sava, A., & Jaba, I. M. (2013). Cardiac troponin T and NT-proBNP as biomarkers of early myocardial damage in amitriptyline-induced cardiovascular toxicity in rats. International Journal of Toxicology,32(5), 351–357.

    Article  PubMed  CAS  Google Scholar 

  25. Mizobuchi, M., Ogata, H., Yamazaki-Nakazawa, A., et al. (2016). Cardiac effect of vitamin D receptor modulators in uremic rats. Journal of Steroid Biochemistry and Molecular Biology,163, 20–27.

    Article  CAS  PubMed  Google Scholar 

  26. Ritter, C., Zhang, S., Finch, J. L., et al. (2014). Cardiac and renal effects of atrasentan in combination with enalapril and paricalcitol in uremic rats. Kidney Blood Pressure Research,39(4), 340–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Panizo, S., Carrillo-López, N., Naves-Díaz, M., et al. (2017). Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrology Dialysis Transplantation,32(11), 1831–1840.

    Article  CAS  Google Scholar 

  28. Kong, J., Kim, G. H., Wei, M., et al. (2010). Therapeutic effects of vitamin D analogs on cardiac hypertrophy in spontaneously hypertensive rats. American Journal of Pathology,177(2), 622–631.

    Article  CAS  PubMed  Google Scholar 

  29. Havakuk, O., Entin-Meer, M., & Ben-Shoshan, J. (2013). Effect of vitamin D analogues on acute cardiorenal syndrome: A laboratory rat model. Israel Medical Association Journal,15(11), 693–697.

    PubMed  Google Scholar 

  30. Uyanıkgil, Y., Solmaz, V., Çavuşoğlu, T., Çınar, B. P., Çetin, E. Ö., Sur, H. Y., et al. (2016). Inhibitor effect of paricalcitol in rat model of pentylenetetrazol-induced seizures. Naunyn-Schmiedeberg's Archives of Pharmacology,389(10), 1117–1122.

    Article  PubMed  CAS  Google Scholar 

  31. Sumbul, O., & Aygun, H. (2019). The effect of vitamin D3 and paricalcitol on penicillin-induced epileptiform activity in rats. Epilepsy Research UK,159, 106262.

    Article  CAS  Google Scholar 

  32. Blaber, M. S., Khan, J. N., Nrebner, J. A., & McColm, R. (2012). “Lipid rescue” for tricyclic antidepressant cardiotoxicity. Journal of Emergency Medicine,43(3), 465–467.

    Article  PubMed  Google Scholar 

  33. Clark, S., Catt, J. W., & Caffery, T. (2015). Rapid diagnosis and treatment of severe tricyclic antidepressant toxicity. BMJ Case Reports. https://doi.org/10.1136/bcr-2015-211428.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kassim, T., Mahfood Haddad, T., Rakhra, A., et al. (2018). A case of amitriptyline-induced myocarditis. Cureus,10(6), e2840.

    PubMed  PubMed Central  Google Scholar 

  35. Knudsen, K., Ricksten, S. E., & Heath, A. (1988). Clonidine interaction in amitriptyline poisoning. Journal of Toxicology: Clinical Toxicology,26(3–4), 223–232.

    CAS  PubMed  Google Scholar 

  36. Kerr, G. W., McGuffie, A. C., & Wilkie, S. (2001). Tricyclic antidepressant overdose: A review. Emergency Medicine Journal,18, 236–241. https://doi.org/10.1136/emj.18.4.236.

    Article  CAS  PubMed  Google Scholar 

  37. Choi, K., & Lee, K. (2008). Serial monitoring of lead avr in patients with prolonged unconsciousness following tricyclic antidepressant overdose. Psychiatry Investigation,5, 247.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sabah, K., Chowdhury, A., Islam, M., Saha, B. P., Kabir, S. R., & Kawser, S. (2017). Amitriptyline-induced ventricular tachycardia: A case report. BMC Research Notes,10, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liebelt, E. L., & Francis, P. D. (2002). Cyclic antidepressants. In L. R. Goldfrank, N. M. Flomenbaum, N. A. Lewin, M. A. Howland, R. S. Hoffman, & L. S. Nelson (Eds.), Goldfrank’s Toxicology Emergencies (7th ed., pp. 847–864). USA: McGraw-Hill Companies.

    Google Scholar 

  40. Nezafati, M. H., Vojdanparast, M., & Nezafati, P. (2015). Antidepressants and cardiovascular adverse events: A narrative review. ARYA Atheroscler.,11, 295–304.

    PubMed  PubMed Central  Google Scholar 

  41. Tsujikawa, S., Matsuura, T., Hori, K., Mori, T., Kuno, M., & Nishikawa, K. (2018). Superior efficacy of lipid emulsion infusion over serum alkalinization in reversing amitriptyline-induced cardiotoxicity in Guinea Pig. Anesthesia & Analgesia,126(4), 1159–1169.

    Article  CAS  Google Scholar 

  42. Ben m’rad, M., Leclerc-Mercier, S., Blanche, P., et al. (2009). Drug-induced hypersensitivity syndrome: clinical and biologic disease patterns in 24 patients. Medicine (Baltimore),88, 131–140.

    Article  CAS  Google Scholar 

  43. Thanacoody, H. K., & Thomas, S. H. (2005). Tricyclic antidepressant poisoning. Toxicol Rev.,24, 205–214. https://doi.org/10.2165/00139709-200524030-00013.

    Article  CAS  PubMed  Google Scholar 

  44. Yetkin, D. O., Kucukkaya, B., Turhan, M., & Oren, M. (2015). The effect of 25-hydroxyvitamin D levels on QT interval duration and dispersion in type 2 diabetic patients. Croat Med J.,56(6), 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. El-Gohary, O. A., & Allam, M. M. (2017). Effect of vitamin D on isoprenaline-induced myocardial infarction in rats: Possible role of peroxisome proliferator-activated receptor-γ. Canadian Journal of Physiology and Pharmacology,95(6), 641–646.

    Article  CAS  PubMed  Google Scholar 

  46. Glenn, D. J., Cardema, M. C., & Gardner, D. G. (2016). Amplification of lipotoxic cardiomyopathy in the VDR gene knockout mouse. J Steroid Biochem Mol Bio.,164, 292–298.

    Article  CAS  Google Scholar 

  47. Taziki, S., Sattari, M. R., & Egbal, M. A. (2013). Evaluation of amitriptyline-induced toxicity in freshly isolated rat hepatocytes and the protective role of taurine. Life Sci J.,10(8s), 314–320.

    Google Scholar 

  48. Taziki, S., Sattari, M. R., Dastmalchi, S., & Eghbal, M. A. (2015). Cytoprotective effects of melatonin against amitriptyline-induced toxicity in isolated rat hepatocytes. Adv Pharm Bull.,5(3), 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stark, G. (2005). Functional consequences of oxidative membrane damage. Journal of Membrane Biology,205, 1–16.

    Article  CAS  PubMed  Google Scholar 

  50. Acosta, D., & Ramos, K. (1984). Cardiotoxicity of tricyclic antidepressants in primary cultures of rat myocardial cells. Journal of Toxicology and Environment Health,14(2–3), 137–143.

    Article  CAS  Google Scholar 

  51. Gul, S. S., & Aygun, H. (2018). Cardioprotective effect of vitamin D and melatonin on doxorubicin-induced cardiotoxicity in rat model: an electrocardiographic, scintigraphic and biochemical study. The European Research Journal,5, 1–9. https://doi.org/10.18621/eurj.410029.

    Article  Google Scholar 

  52. Hur, S. J., Kim, D. M., Lim, K. H., et al. (2009). Vitamin D levels and their relationship with cardiac biomarkers in chronic hemodialysis patients. Journal of Korean Medical Science,24(Suppl 1), S109–S114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farhangi, M. A., Nameni, G., Hajiluian, G., & Mesgari-Abbasi, M. (2017). Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat-diet induced obese rats. BMC Cardiovasc Disord.,17(1), 161.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Okuda, K., Nohara, R., Fujita, M., et al. (1994). Technetium-99m-pyrophosphate uptake as an indicator of myocardial injury without infarct. Journal of Nuclear Medicine,35(8), 1366–1370.

    CAS  PubMed  Google Scholar 

  55. Mochizuki, T., Murase, K., Higashino, H., et al. (2002). Ischemic "memory image" in acute myocardial infarction of 123I-BMIPP after reperfusion therapy: A comparison with 99mTc-pyrophosphate and 201Tl dual-isotope SPECT. Annals of Nuclear Medicine,16(8), 563–568.

    Article  PubMed  Google Scholar 

  56. Einstein, A. J., Shuryak, I., Castano, A., et al. (2018). Estimating cancer risk from 99mTc pyrophosphate imaging for transthyretin cardiac amyloidosis. Journal of Nuclear Cardiology.. https://doi.org/10.1007/s12350-018-1307-7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Matthews, K. L., Aarsvold, J. N., Mintzer, R. A., Chen, C. T., & Lee, R. C. (2006). Tc-99m pyrophosphate imaging of poloxamer-treated electroporated skeletal muscle in an in vivo rat model. Burns,32(6), 755–764.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Walker, U. A., Garve, K., Brink, I., et al. (2007). 99mTechnetium pyrophosphate scintigraphy in the detection of skeletal muscle disease. Clinical Rheumatology,26(7), 1119–1122.

    Article  CAS  PubMed  Google Scholar 

  59. Çiftçi, O. D., Gül, S. S., Açıksarı, K., et al. (2016). The diagnostic utility of scintigraphy in esophageal burn: A rat model. Journal of Surgical Research,200(2), 495–500.

    Article  PubMed  Google Scholar 

  60. Cantorna, M. T., Zhu, Y., Froicu, M., & Wittke, A. (1720S). Vitamin D status, 1–25- dihydroxyvitamin D3, and the immune system. American Journal of Clinical Nutrition,80(Suppl), 1717S–1720S.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, Y., Mahon, B. D., Froicu, M., & Cantorna, M. T. (2005). Calcium and 1 alpha,25-dihydroxyvitamin D3 target the TNF-alpha pathway to suppress experimental inflammatory bowel disease. European Journal of Immunology,35, 217–224.

    Article  CAS  PubMed  Google Scholar 

  62. Lyakh, L. A., Sanford, M., Chekol, S., Young, H. A., & Roberts, A. B. (2005). TGF-beta and vitamin D3 utilize distinct pathways to suppress IL-12 production and modulate rapid differentiation of human monocytes into CD83 + dendritic cells. The Journal of Immunology,174, 2061–2070.

    Article  CAS  PubMed  Google Scholar 

  63. Kong, J., Grando, S. A., & Li, Y. C. (2006). Regulation of IL-1 family cytokines IL-1%3e, IL-1 receptor antagonist, and IL-18 by 1,25-dihydroxyvitamin D3 in primary keratinocytes. The Journal of Immunology,176, 3780–3787.

    Article  CAS  PubMed  Google Scholar 

  64. Froicu, M., & Cantorna, M. T. (2007). Vitamin D and the vitamin D receptor are critical for control of the innate immune response to colonic injury. BMC Immunol.,8, 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Izquierdo, M. J., Cavia, M., Muñiz, P., de Francisco, A. L., Arias, M., Santos, J., et al. (2012). Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients. BMC Nephrology,13(1), 159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Husain, K., Hernandez, W., Ansari, R. A., & Ferder, L. (2015). Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World Journal of Biological Chemistry,6(3), 209.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Suarez-Martinez, E., Husain, K., & Ferder, L. (2014). Adiponectin expression and the cardioprotective role of the vitamin D receptor activator paricalcitol and the angiotensin converting enzyme inhibitor enalapril in ApoE-deficient mice. Therapeutic Advances in Cardiovascular Disease,8(6), 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benowitz, N. L. (1999). Tricylic antidepresants. In K. R. Olson (Ed.), Poisoning and Drug Overdose (3rd ed., pp. 310–312). USA: Connecticut.

    Google Scholar 

  69. Tuncok, Y., Kalkan, S., Murat, N., et al. (2002). The effect of the nitric oxide synthesis inhibitor L-NAME on amitriptyline-induced hypotension in rats. Journal of Toxicology—Clinical Toxicology,40(2), 121–127.

    Article  CAS  PubMed  Google Scholar 

  70. Finch, J. L., Suarez, E. B., Husain, K., Ferder, L., Cardema, M. C., Glenn, D. J., et al. (2011). Effect of combining an ACE inhibitor and a VDR activator on glomerulosclerosis, proteinuria, and renal oxidative stress in uremic rats. American Journal of Physiology—Renal Physiology,302(1), F141–F149.

    Article  PubMed  CAS  Google Scholar 

  71. Zahradnı´k, I., Minarovic, I., & Zahradnı´kova´, A. (2008). Inhibition of the cardiac L-type calcium channel current by antidepressant drugs. Journal of Pharmacology and Experimental Therapeutics,324(3), 977–984.

    Article  CAS  Google Scholar 

  72. Yang, W. S., Yu, H., Kim, J. J., Lee, M. J., & Park, S. K. (2016). Vitamin D-induced ectodomain shedding of TNF receptor 1 as a nongenomic action: D3 vs D2 derivatives. The Journal of Steroid Biochemistry and Molecular Biology,155, 18–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HA: designing the research concept. HA, NB, and SSG: conducting experiments, collecting data, analyzing, and interpreting the data. HA: preparing the manuscript and making revisions. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Hatice Aygun.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Handling Editor: Y. James Kang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aygun, H., Basol, N. & Gul, S.S. Cardioprotective Effect of Paricalcitol on Amitriptyline-Induced Cardiotoxicity in Rats: Comparison of [99mTc]PYP Cardiac Scintigraphy with Electrocardiographic and Biochemical Findings. Cardiovasc Toxicol 20, 427–436 (2020). https://doi.org/10.1007/s12012-020-09569-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-020-09569-3

Keywords

Navigation