Skip to main content

Advertisement

Log in

Carbon Monoxide Attenuates High Salt-Induced Hypertension While Reducing Pro-inflammatory Cytokines and Oxidative Stress in the Paraventricular Nucleus

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) presents anti-inflammatory and antioxidant activities as a new gaseous neuromessenger produced by heme oxygenase-1 (HO-1) in the body. High salt-induced hypertension is relevant to the levels of pro-inflammatory cytokines (PICs) and oxidative stress in the hypothalamic paraventricular nucleus (PVN). We explored whether CO in PVN can attenuate high salt-induced hypertension by regulating PICs or oxidative stress. Male Dahl Salt-Sensitive rats were fed high-salt (8% NaCl) or normal-salt (0.3% NaCl) diet for 4 weeks. CORM-2, ZnPP IX, or vehicle was microinjected into bilateral PVN for 6 weeks. High-salt diet increased the levels of MAP, plasma norepinephrine (NE), reactive oxygen species (ROS), and the expressions of COX2, IL-1β, IL-6, NOX2, and NOX4 significantly in PVN (p < 0.05), but decreased the expressions of HO-1 and Cu/Zn-SOD in PVN (p < 0.05). Salt increased sympathetic activity as measured by circulating norepinephrine, and increased the ratio of basal RSNA to max RSNA, in part by decreasing max RSNA. PVN microinjection of CORM-2 decreased the levels of MAP, NE, RSNA, ROS and the expressions of COX2, IL-1β, IL-6, NOX2, NOX4 significantly in PVN of hypertensive rat (p < 0.05), but increased the expressions of HO-1 and Cu/Zn-SOD significantly (p < 0.05), which were all opposite to the effects of ZnPP IX microinjected in PVN (p < 0.05). We concluded that exogenous or endogenous CO attenuates high salt-induced hypertension by regulating PICs and oxidative stress in PVN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Frohlich, E. D., & Varagic, J. (2005). Sodium directly impairs target organ function in hypertension. Curr Opin Cardiol, 20, 424–429.

    Article  PubMed  Google Scholar 

  2. Ha, S. K. (2014). Dietary salt intake and hypertension. Electrolyte Blood Press, 12, 7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu, X. J., Suo, Y. P., Qi, J., Yang, Q., Li, H. H., Zhang, D. M., et al. (2013). Interaction between AT1 receptor and NF-kappaB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure. Cardiovasc Toxicol, 13, 381–390.

    Article  CAS  PubMed  Google Scholar 

  4. Su, Q., Qin, D. N., Wang, F. X., Ren, J., Li, H. B., Zhang, M., et al. (2014). Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin-angiotensin system and proinflammatory cytokines in hypertension. Toxicol Appl Pharmacol, 276, 115–120.

    Article  CAS  PubMed  Google Scholar 

  5. Cardinale, J. P., Sriramula, S., Mariappan, N., Agarwal, D., & Francis, J. (2012). Angiotensin II-induced hypertension is modulated by nuclear factor-kappaBin the paraventricular nucleus. Hypertension, 59, 113–121.

    Article  CAS  PubMed  Google Scholar 

  6. Kang, Y. M., Zhang, D. M., Yu, X. J., Yang, Q., Qi, J., Su, Q., et al. (2014). Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines. Toxicol Appl Pharmacol, 274, 436–444.

    Article  CAS  PubMed  Google Scholar 

  7. Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.

    Article  CAS  PubMed  Google Scholar 

  8. Levitt, D. G., & Levitt, M. D. (2015). Carbon monoxide: a critical quantitative analysis and review of the extent and limitations of its second messenger function. Clin Pharmacol, 7, 37–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Maines, M. D. (1997). The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol, 37, 517–554.

    Article  CAS  PubMed  Google Scholar 

  10. Ewing, J. F., & Maines, M. D. (1992). In situ hybridization and immunohistochemical localization of heme oxygenase-2 mRNA and protein in normal rat brain: differential distribution of isozyme 1 and 2. Mol Cell Neurosci, 3, 559–570.

    Article  CAS  PubMed  Google Scholar 

  11. Vincent, S. R., Das, S., & Maines, M. D. (1994). Brain heme oxygenase isoenzymes and nitric oxide synthase are co-localized in select neurons. Neuroscience, 63, 223–231.

    Article  CAS  PubMed  Google Scholar 

  12. Leffler, C. W., Parfenova, H., & Jaggar, J. H. (2011). Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol, 301, H1–H11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Granger, J. P. (2006). An emerging role for inflammatory cytokines in hypertension. Am J Physiol Heart Circ Physiol, 290, H923–H924.

    Article  CAS  PubMed  Google Scholar 

  14. Guzik, T. J., & Touyz, R. M. (2017). Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 70, 660–667.

    Article  CAS  PubMed  Google Scholar 

  15. Naregal, G. V., Devaranavadagi, B. B., Patil, S. G., & Aski, B. S. (2017). Elevation of oxidative stress and decline in endogenous antioxidant defense in elderly individuals with hypertension. J Clin Diagn Res, 11, BC09–BC12.

    PubMed  PubMed Central  Google Scholar 

  16. Harayama, S., Kok, M., & Neidle, E. L. (1992). Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol, 46, 565–601.

    Article  CAS  PubMed  Google Scholar 

  17. Bai, J., Yu, X. J., Liu, K. L., Wang, F. F., Jing, G. X., Li, H. B., et al. (2017). Central administration of tert-butylhydroquinone attenuates hypertension via regulating Nrf2 signaling in the hypothalamic paraventricular nucleus of hypertensive rats. Toxicol Appl Pharmacol, 333, 100–109.

    Article  CAS  PubMed  Google Scholar 

  18. Liang, Y. F., Zhang, D. D., Yu, X. J., Gao, H. L., Liu, K. L., Qi, J., et al. (2017). Hydrogen sulfide in paraventricular nucleus attenuates blood pressure by regulating oxidative stress and inflammatory cytokines in high salt-induced hypertension. Toxicol Lett, 270, 62–71.

    Article  CAS  PubMed  Google Scholar 

  19. Gorojod, R. M., Alaimo, A., Porte Alcon, S., Martinez, J. H., Cortina, M. E., Vazquez, E. S., et al. (2018). Heme oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett, 295, 357–368.

    Article  CAS  PubMed  Google Scholar 

  20. Berne, J. P., Lauzier, B., Rochette, L., & Vergely, C. (2012). Carbon monoxide protects against ischemia-reperfusion injury in vitro via antioxidant properties. Cell Physiol Biochem, 29, 475–484.

    Article  CAS  PubMed  Google Scholar 

  21. Parfenova, H., Leffler, C. W., Basuroy, S., Liu, J., & Fedinec, A. L. (2012). Antioxidant roles of heme oxygenase, carbon monoxide, and bilirubin in cerebral circulation during seizures. J Cereb Blood Flow Metab, 32, 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lian, S., Xia, Y., Ung, T. T., Khoi, P. N., Yoon, H. J., Kim, N. H., et al. (2016). Carbon monoxide releasing molecule-2 ameliorates IL-1beta-induced IL-8 in human gastric cancer cells. Toxicology, 361–362, 24–38.

    Article  CAS  PubMed  Google Scholar 

  23. Bauer, B., Goderz, A. L., Braumuller, H., Neudorfl, J. M., Rocken, M., Wieder, T., et al. (2017). Methyl fumarate-derived iron carbonyl complexes (FumET-CORMs) as powerful anti-inflammatory agents. ChemMedChem, 12, 1927–1930.

    Article  CAS  PubMed  Google Scholar 

  24. Choi, S., Kim, J., Kim, J. H., Lee, D. K., Park, W., Park, M., et al. (2017). Carbon monoxide prevents TNF-alpha-induced eNOS downregulation by inhibiting NF-kappaB-responsive miR-155-5p biogenesis. Exp Mol Med, 49, e403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, C. C., Yang, C. C., Hsiao, L. D., Chen, S. Y., & Yang, C. M. (2017). Heme oxygenase-1 induction by carbon monoxide releasing molecule-3 suppresses interleukin-1 beta-mediated neuroinflammation. Front Mol Neurosci, 10, 387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun, Q., Wu, Y., Zhao, F., & Wang, J. (2017). Maresin 1 ameliorates lung ischemia/reperfusion injury by suppressing oxidative stress via activation of the Nrf-2-mediated HO-1 signaling pathway. Oxid Med Cell Longev, 2017, 9634803.

    PubMed  PubMed Central  Google Scholar 

  27. Stocker, R., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1990). Antioxidant activities of bile pigments: biliverdin and bilirubin. Methods Enzymol, 186, 301–309.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, W., Maghzal, G. J., Ayer, A., Suarna, C., Dunn, L. L., & Stocker, R. (2018). Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radic Biol Med, 115, 156–165.

    Article  CAS  PubMed  Google Scholar 

  29. Nassar, N. N., Li, G., Strat, A. L., & Abdel-Rahman, A. A. (2011). Enhanced hemeoxygenase activity in the rostral ventrolateral medulla mediates exaggerated hemin-evoked hypotension in the spontaneously hypertensive rat. J Pharmacol Exp Ther, 339, 267–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fouda, M. A., El-Gowelli, H. M., El-Gowilly, S. M., Rashed, L., & El-Mas, M. M. (2014). Impairment of nitric oxide synthase but not heme oxygenase accounts for baroreflex dysfunction caused by chronic nicotine in female rats. PLoS ONE, 9, e98681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qi, J., Zhang, D. M., Suo, Y. P., Song, X. A., Yu, X. J., Elks, C., et al. (2013). Renin-angiotensin system modulates neurotransmitters in the paraventricular nucleus and contributes to angiotensin II-induced hypertensive response. Cardiovasc Toxicol, 13, 48–54.

    Article  CAS  PubMed  Google Scholar 

  32. Li, H. B., Qin, D. N., Ma, L., Miao, Y. W., Zhang, D. M., Lu, Y., et al. (2014). Chronic infusion of lisinopril into hypothalamic paraventricular nucleus modulates cytokines and attenuates oxidative stress in rostral ventrolateral medulla in hypertension. Toxicol Appl Pharmacol, 279, 141–149.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, M., Qin, D. N., Suo, Y. P., Su, Q., Li, H. B., Miao, Y. W., et al. (2015). Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension. Toxicol Lett, 235, 206–215.

    Article  CAS  PubMed  Google Scholar 

  34. Kang, Y. M., Gao, F., Li, H. H., Cardinale, J. P., Elks, C., Zang, W. J., et al. (2011). NF-kappaB in the paraventricular nucleus modulates neurotransmitters and contributes to sympathoexcitation in heart failure. Basic Res Cardiol, 106, 1087–1097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kagota, S., Tamashiro, A., Yamaguchi, Y., Nakamura, K., & Kunitomo, M. (2002). High salt intake impairs vascular nitric oxide/cyclic guanosine monophosphate system in spontaneously hypertensive rats. J Pharmacol Exp Ther, 302, 344–351.

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, R. A., Colombari, E., Colombari, D. S., Lavesa, M., Talman, W. T., & Nasjletti, A. (1997). Role of endogenous carbon monoxide in central regulation of arterial pressure. Hypertension, 30, 962–967.

    Article  CAS  PubMed  Google Scholar 

  37. Lo, W. C., Jan, C. R., Chiang, H. T., & Tseng, C. J. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension, 35, 1253–1257.

    Article  CAS  PubMed  Google Scholar 

  38. Lo, W. C., Chan, J. Y., Tung, C. S., & Tseng, C. J. (2002). Carbon monoxide and metabotropic glutamate receptors in rat nucleus tractus solitarii: participation in cardiovascular effect. Eur J Pharmacol, 454, 39–45.

    Article  CAS  PubMed  Google Scholar 

  39. Lin, C. H., Lo, W. C., Hsiao, M., & Tseng, C. J. (2003). Interaction of carbon monoxide and adenosine in the nucleus tractus solitarii of rats. Hypertension, 42, 380–385.

    Article  CAS  PubMed  Google Scholar 

  40. Johnson, R. A., Lavesa, M., DeSeyn, K., Scholer, M. J., & Nasjletti, A. (1996). Heme oxygenase substrates acutely lower blood pressure in hypertensive rats. Am J Physiol, 271, H1132–H1138.

    CAS  PubMed  Google Scholar 

  41. Johnson, R. A., Lavesa, M., Askari, B., Abraham, N. G., & Nasjletti, A. (1995). A heme oxygenase product, presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension, 25, 166–169.

    Article  CAS  PubMed  Google Scholar 

  42. Bolognesi, M., Sacerdoti, D., Piva, A., Di Pascoli, M., Zampieri, F., Quarta, S., et al. (2007). Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. J Pharmacol Exp Ther, 321, 187–194.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, M. L., Yu, X. J., Li, X. G., Pang, D. Z., Su, Q., Saahene, R. O., et al. (2018). Blockade of TLR4 within the paraventricular nucleus attenuates blood pressure by regulating ROS and inflammatory cytokines in prehypertensive rats. Am J Hypertens, 31, 1013–1023.

    Article  CAS  PubMed  Google Scholar 

  44. Kang, Y. M., Yang, Q., Yu, X. J., Qi, J., Zhang, Y., Li, H. B., et al. (2014). Hypothalamic paraventricular nucleus activation contributes to neurohumoral excitation in rats with heart failure. Regen Med Res, 2, 2.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shi, P., Diez-Freire, C., Jun, J. Y., Qi, Y., Katovich, M. J., Li, Q., et al. (2010). Brain microglial cytokines in neurogenic hypertension. Hypertension, 56, 297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sriramula, S., Cardinale, J. P., & Francis, J. (2013). Inhibition of TNF in the brain reverses alterations in RAS components and attenuates angiotensin II-induced hypertension. PLoS ONE, 8, e63847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi, J., Zhao, X. F., Yu, X. J., Yi, Q. Y., Shi, X. L., Tan, H., et al. (2016). Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc Toxicol, 16, 298–306.

    Article  CAS  PubMed  Google Scholar 

  48. Ho, Y. H., Lin, Y. T., Wu, C. W., Chao, Y. M., Chang, A. Y., & Chan, J. Y. (2015). Peripheral inflammation increases seizure susceptibility via the induction of neuroinflammation and oxidative stress in the hippocampus. J Biomed Sci, 22, 46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wei, S. G., Yu, Y., & Felder, R. B. (2018). Blood-borne interleukin-1beta acts on the subfornical organ to upregulate the sympathoexcitatory milieu of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol, 314, R447–R458.

    Article  CAS  PubMed  Google Scholar 

  50. Qi, J., Yu, X. J., Shi, X. L., Gao, H. L., Yi, Q. Y., Tan, H., et al. (2016). NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and Caspase-1. Cardiovasc Toxicol, 16, 345–354.

    Article  CAS  PubMed  Google Scholar 

  51. Kang, Y. M., He, R. L., Yang, L. M., Qin, D. N., Guggilam, A., Elks, C., et al. (2009). Brain tumour necrosis factor-alpha modulates neurotransmitters in hypothalamic paraventricular nucleus in heart failure. Cardiovasc Res, 83, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, H. B., Qin, D. N., Cheng, K., Su, Q., Miao, Y. W., Guo, J., et al. (2015). Central blockade of salusin beta attenuates hypertension and hypothalamic inflammation in spontaneously hypertensive rats. Sci Rep, 5, 11162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Xin-ai Song for technical assistance. This work was supported by National Natural Science Foundation of China (Grant Numbers 81770426, 91439120, 81600330, 81600333), China Postdoctoral Science Foundation (Nos. 2016M590957, 2016M602835), Shaanxi Postdoctoral Science Foundation (Nos. 2016BSHEDZZ89, 2016BSHEDZZ91), and the Foundation of Jiamusi University (Grant Number Sq2014-001).

Author information

Authors and Affiliations

Authors

Contributions

YK, XY, and DZ designed the study. DZ, YL, JQ, HG, KL, YC, XS, GX, and LF performed all experiments. DZ and YL also performed data analysis and drafted the manuscript. YK, WC, JQ, and KK critically revised the manuscript. All authors reviewed the final manuscript.

Corresponding authors

Correspondence to Jie Qi, Yu-Ming Kang or Wei Cui.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Handling Editor: Rajiv Janardhanan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, DD., Liang, YF., Qi, J. et al. Carbon Monoxide Attenuates High Salt-Induced Hypertension While Reducing Pro-inflammatory Cytokines and Oxidative Stress in the Paraventricular Nucleus. Cardiovasc Toxicol 19, 451–464 (2019). https://doi.org/10.1007/s12012-019-09517-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09517-w

Keywords

Navigation