Skip to main content

Advertisement

Log in

Acute and Subacute Effects of Low Versus High Doses of Standardized Panax ginseng Extract on the Heart: An Experimental Study

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Panax ginseng is commonly used in Chinese medicine and Western herbal preparations. However, it has also been recently noted to be associated with some cardiac pathologies-including cardiogenic shock due to acute anterior myocardial infarction, trans-ischemic attack, and stent thrombosis. This study was aimed to elucidate acute and subacute effects of the low and high doses of standardized Panax ginseng extract (sPGe) on cardiac functions. Rats were randomly assigned to control group, acute low-dose group (ALD), subacute low-dose group (SALD), acute high-dose group (AHD), and subacute high-dose group (SAHD). The cardiac effects of sPGe were evaluated using hemodynamic, biochemical, echocardiographic, genetic, and immunohistopathologic parameters. Mean blood pressures were significantly lower in all sPGe-treated groups compared with the control group. Troponin I and myoglobin levels were increased in the SALD, AHD, and SAHD groups. Mitral E-wave velocity was reduced after sPGe administration in all the groups. Acidophilic cytoplasm and pyknotic nucleus in myocardial fibers were observed in AHD and SAHD groups. Cu/Zn-SOD1 gene expressions were significantly higher in the sPGe-treated groups whereas caveolin 1 and VEGF-A gene expressions were not changed. According to our results, sPGe may have a potential effect to cause cardiac damage including diastolic dysfunction, heart failure with preserved ejection fraction, and reduction of blood pressure depending on the dose and duration of usage. Healthcare professionals must be aware of adverse reactions stemming from the supplementation use, particularly with cardiac symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

sPGe:

Standardized Panax ginseng extract

ALD:

Acute low dose

SALD:

Subacute low dose

AHD:

Acute high dose

SAHD:

Subacute high dose

AV:

Atrioventricular

AA:

Diameter of ascending aorta

LA:

Diameter of left atrium

IVSt:

Interventricular septal thickness in diastole

LVED:

Left ventricular end-diastolic diameter

LVES:

Left ventricular end-systolic diameter

EF:

Ejection fraction

FS:

Fractional shortening

E/A:

Peak velocity of E-wave/peak velocity of A-wave

EDT:

E-wave deceleration time

CAV1:

Caveolin 1

References

  1. Gallin, J. I. (2017). A historical perspective on clinical research. In Principles and practice of clinical research (4th Ed.) (pp 1–15). Amsterdam: Elsevier.

    Google Scholar 

  2. Qi, Z., & Kelley, E. (2014). The WHO traditional medicine strategy 2014–2023: A perspective. Science, 346, S5–S6.

    Google Scholar 

  3. Choi, K. T. (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharmacologica Sinica, 29, 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  4. Karmazyn, M., Moey, M., & Gan, X. T. (2011). Therapeutic potential of ginseng in the management of cardiovascular disorders. Drugs, 71, 1989–2008.

    Article  CAS  PubMed  Google Scholar 

  5. Buettner, C., Yeh, G. Y., Phillips, R. S., Mittleman, M. A., & Kaptchuk, T. J. (2006). Systematic review of the effects of ginseng on cardiovascular risk factors. Annals of Pharmacotherapy, 40, 83–95.

    Article  CAS  PubMed  Google Scholar 

  6. Caron, M. F., Hotsko, A. L., Robertson, S., Mandybur, L., Kluger, J., & White, C. M. (2002). Electrocardiographic and hemodynamic effects of Panax ginseng. Annals of Pharmacotherapy, 36, 758–763.

    Article  PubMed  Google Scholar 

  7. Paik, D. J., & Lee, C. H. (2015). Review of cases of patient risk associated with ginseng abuse and misuse. Journal of Ginseng Research, 39, 89–93.

    Article  PubMed  Google Scholar 

  8. Park, B.-J., Lee, Y.-J., Lee, H.-R., Jung, D.-H., Na, H.-Y., Kim, H.-B., & Shim, J.-Y. (2012). Effects of Korean red ginseng on cardiovascular risks in subjects with metabolic syndrome: A double-blind randomized controlled study. Korean Journal of Family Medicine, 33, 190–196.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vuksan, V., Stavro, M., Woo, M., Leiter, L., Sung, M., & Sievenpiper, J. (2006). Korean red ginseng (Panax ginseng) can lower blood pressure in individuals with hypertension: a randomized controlled trial, in Proceedings of the 9th international ginseng symposium (pp 25–28). Geumsan: Korean Society of Ginseng.

  10. Kim, N. D., Kang, S. Y., & Schini, V. B. (1994). Ginsenosides evoke endothelium-dependent vascular relaxation in rat aorta. General pharmacology, 25, 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  11. Kang, S. Y., Schini-Kerth, V. B., & Kim, N. D. (1995). Ginsenosides of the protopanaxatriol group cause endothelium-dependent relaxation in the rat aorta. Life Sciences, 56, 1577–1586.

    Article  CAS  PubMed  Google Scholar 

  12. Wagner, H., & Liu, X. (1987). The international textbook of cardiology. New York: Pergamon Press.

    Google Scholar 

  13. Turfan, M., Tasal, A., Ergun, F., & Ergelen, M. (2012). A sudden rise in INR due to combination of Tribulus terrestris, Avena sativa, and Panax ginseng (Clavis Panax). Turk Kardiyoloji Dernegi arsivi: Turk Kardiyoloji Derneginin yayin organidir, 40, 259–261.

    Article  Google Scholar 

  14. Torbey, E., Rafeh, N. A., Khoueiry, G., Kowalski, M., & Bekheit, S. (2011). Ginseng: a potential cause of long QT. Journal of Electrocardiology, 44, 357–358.

    Article  PubMed  Google Scholar 

  15. Gunes, H., Kucukdurmaz, Z., Karapinar, H., & Gul, I. (2012). [Acute anterior myocardial infarction presented with cardiogenic shock in a patient on herbal medication]. Turk Kardiyol Dern Ars, 40, 262–264.

    Article  PubMed  Google Scholar 

  16. Martínez-Mir, I., Rubio, E., Morales-Olivas, F. J., & Palop-Larrea, V. (2004). Transient ischemic attack secondary to hypertensive crisis related to Panax ginseng. Annals of Pharmacotherapy, 38, 1970–1970.

    Article  PubMed  Google Scholar 

  17. Yüksel, I., Arslan, S., Çağırcı, G., & Yılmaz, A. (2013). Acute massive pulmonary embolism in a patient using clavis panax. Turk Kardiyoloji Dernegi arsivi: Turk Kardiyoloji Derneginin yayin organidir, 41, 351–353.

    Article  Google Scholar 

  18. Parlakpinar, H., Ozhan, O., Ermis, N., & Acet, A. (2016). Cardiovascular effects of Panax ginseng. Journal of Turgut Ozal Medical Center, 23, 482–487

    Article  Google Scholar 

  19. Zheng, M.-M., Xu, F.-X., Li, Y.-J., Xi, X.-Z., Cui, X.-W., Han, C.-C., & Zhang, X.-L. (2017). Study on transformation of ginsenosides in different methods. BioMed Research International, 2017, 8601027–8601027.

    PubMed  PubMed Central  Google Scholar 

  20. Wu, Y., Xia, Z., Dou, J., Zhang, L., Xu, J., Zhao, B., Lei, S., & Liu, H. (2011). Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Molecular Biology Reports, 38, 4327–4335.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang, Q.-S., Huang, X.-N., Dai, Z.-K., Yang, G.-Z., Zhou, Q.-X., Shi, J.-S., & Wu (2007). Inhibitory effect of ginsenoside Rb1 on cardiac hypertrophy induced by monocrotaline in rat. Journal of Ethnopharmacology, 111, 567–572.

    Article  CAS  PubMed  Google Scholar 

  22. Deng, J., Lv, X.-T., Wu, Q., & Huang, X.-N. (2009). Ginsenoside Rg1 inhibits rat left ventricular hypertrophy induced by abdominal aorta coarctation: involvement of calcineurin and mitogen-activated protein kinase signalings. European Journal of Pharmacology, 608, 42–47.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Z., Li, Z., & Liu, X.J. (2002). Effect of ginsenoside Re on cardiomyocyte apoptosis and expression of Bcl-2/Bax gene after ischemia and reperfusion in rats. Journal of Huazhong University of Science and Technology [Medical Sciences], 22, 305–309.

    Article  Google Scholar 

  24. Li, J., Xie, Z.-Z., Tang, Y.-B., Zhou, J.-G., & Guan, Y.-Y. (2011). Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. European Journal of Pharmacology, 652, 104–110.

    Article  CAS  PubMed  Google Scholar 

  25. McGrath, J., Drummond, G., McLachlan, E., Kilkenny, C., & Wainwright, C. (2010). Guidelines for reporting experiments involving animals: The ARRIVE guidelines. British Journal of Pharmacology, 160, 1573–1576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Teichholz, L. E., Kreulen, T., Herman, M. V., & Gorlin, R. (1976). Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. The American journal of cardiology, 37, 7–11.

    Article  CAS  PubMed  Google Scholar 

  27. Walker, M., Curtis, M., Hearse, D., Campbell, R., Janse, M., Yellon, D., Cobbe, S., Coker, S., Harness, J., & Harron, D. (1988). The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia, infarction, and reperfusion. Cardiovascular Research, 22, 447–455.

    Article  CAS  PubMed  Google Scholar 

  28. Parlakpinar, H., Olmez, E., Acet, A., Ozturk, F., Tasdemir, S., Ates, B., Gul, M., & Otlu, A. (2009). Beneficial effects of apricot-feeding on myocardial ischemia-reperfusion injury in rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47, 802–808.

    Article  CAS  Google Scholar 

  29. Kalkan, F., Parlakpinar, H., Disli, O. M., Tanriverdi, L. H., Ozhan, O., Polat, A., Cetin, A., Vardi, N., Otlu, Y. O., & Acet, A. (2018). Protective and therapeutic effects of dexpanthenol on isoproterenol-induced cardiac damage in rats. Journal of Cellular Biochemistry, 119(9), 7479–7489

    Article  CAS  Google Scholar 

  30. Ozbek, E., Simsek, A., Ozbek, M., & Somay, A. (2013). Caloric restriction increases internal iliac artery and penil nitric oxide synthase expression in rat: Comparison of aged and adult rats. Archivio Italiano di Urologia e Andrologia, 85, 113–117.

    Article  CAS  PubMed  Google Scholar 

  31. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  32. Curtis, M. J., Alexander, S., Cirino, G., Docherty, J. R., George, C. H., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Sobey, C. G., Stanford, S. C., Teixeira, M. M., Wonnacott, S., & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175, 987–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. WSSPAS: Web-Based Sample Size & Power Analysis Software [Software]. (2018). Accessed Oct 01, 2018, from http://biostatapps.inonu.edu.tr/WSSPAS/.

  34. Xiang, Y. Z., Shang, H. C., Gao, X. M., & Zhang, B. L. (2008). A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytotherapy Research, 22, 851–858.

    Article  PubMed  Google Scholar 

  35. Attele, A. S., Wu, J. A., & Yuan, C.-S. (1999). Ginseng pharmacology: Multiple constituents and multiple actions. Biochemical Pharmacology, 58, 1685–1693.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, W., Chai, H., Lin, P. H., Lumsden, A. B., Yao, Q., & Chen, C. (2004). Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Medical Science Monitor, 10, RA187–RA192.

    PubMed  Google Scholar 

  37. Cheng, Y., Shen, L. H., & Zhang, J. T. (2005). Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacologica Sinica, 26, 143–149.

    Article  CAS  PubMed  Google Scholar 

  38. Rhee, M.-Y., Cho, B., Kim, K.-I., Kim, J., Kim, M. K., Lee, E.-K., Kim, H.-J., & Kim, C.-H. (2014). Blood pressure lowering effect of Korea ginseng derived ginseol K-g1. The American Journal of Chinese Medicine, 42, 605–618.

    Article  CAS  PubMed  Google Scholar 

  39. Li, H.-X., Han, S.-Y., Ma, X., Zhang, K., Wang, L., Ma, Z.-Z., & Tu, P.-F. (2012). The saponin of red ginseng protects the cardiac myocytes against ischemic injury in vitro and in vivo. Phytomedicine, 19, 477–483.

    Article  CAS  PubMed  Google Scholar 

  40. Jovanovski, E., Bateman, E. A., Bhardwaj, J., Fairgrieve, C., Mucalo, I., Jenkins, A. L., & Vuksan, V. (2014). Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: A randomized controlled trial. Journal of the American Society of Hypertension, 8, 537–541.

    Article  CAS  PubMed  Google Scholar 

  41. Lee, K. H., Bae, I. Y., Park, S. I., Park, J.-D., & Lee, H. G. (2016). Antihypertensive effect of Korean Red Ginseng by enrichment of ginsenoside Rg3 and arginine–fructose. Journal of Ginseng Research, 40, 237–244.

    Article  PubMed  Google Scholar 

  42. Lim, K. H., Ko, D., & Kim, J.-H. (2013). Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. Journal of Ginseng Research, 37, 273.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yan, X., Wu, H., Ren, J., Liu, Y., Wang, S., Yang, J., Qin, S., & Wu, D. (2018). Shenfu Formula reduces cardiomyocyte apoptosis in heart failure rats by regulating microRNAs. Journal of Ethnopharmacology, 227, 105–112.

    Article  Google Scholar 

  44. Jin, Z., & Liu, C. (1994). Effect of ginsenoside Re on the electrophysiological activity of the heart. Planta Medica, 60, 192–193.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, M., Murias, J. M., Chrones, T., Sims, S. M., Lui, E., & Noble, E. G. (2014). American ginseng acutely regulates contractile function of rat heart. Frontiers in Pharmacology, 5, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nakaya, Y., Mawatari, K., Takahashi, A., Harada, N., Hata, A., & Yasui, S. (2007). The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. The Journal of Medical Investigation: JMI, 54, 381–384.

    Article  PubMed  Google Scholar 

  47. Komishon, A., Shishtar, E., Ha, V., Sievenpiper, J., de Souza, R., Jovanovski, E., Ho, H., Duvnjak, L. S., & Vuksan, V. (2016). The effect of ginseng (genus Panax) on blood pressure: A systematic review and meta-analysis of randomized controlled clinical trials. Journal of Human Hypertension, 30, 619.

    Article  CAS  PubMed  Google Scholar 

  48. Luo, D., & Fang, B. (2008). Structural identification of ginseng polysaccharides and testing of their antioxidant activities. Carbohydrate Polymers, 72, 376–381.

    Article  CAS  Google Scholar 

  49. Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J., Falk, V., González-Juanatey, J. R., Harjola, V. P., & Jankowska, E. A. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 18, 891–975.

    Article  PubMed  Google Scholar 

  50. Afsin Oktay, A., & Shah, J., S (2015). Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Current Cardiology Reviews, 11, 42–52.

    Article  PubMed  Google Scholar 

  51. Disli, O. M., Sarihan, E., Colak, M. C., Vardi, N., Polat, A., Yagmur, J., Tamtekin, B., & Parlakpinar, H. (2013). Effects of molsidomine against doxorubicin-induced cardiotoxicity in rats. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, 51, 79–90.

    Article  CAS  PubMed  Google Scholar 

  52. Parlakpinar, H., Ozer, M. K., & Acet, A. (2005). Effect of aminoguanidine on ischemia-reperfusion induced myocardial injury in rats. Molecular and Cellular Biochemistry, 277, 137–142.

    Article  CAS  PubMed  Google Scholar 

  53. Ozer, M. K., Parlakpinar, H., Vardi, N., Cigremis, Y., Ucar, M., & Acet, A. (2005). Myocardial ischemia/reperfusion-induced oxidative renal damage in rats: protection by caffeic acid phenethyl ester (CAPE). Shock, 24, 97–100.

    Article  CAS  PubMed  Google Scholar 

  54. Elmore, S. A., Dixon, D., Hailey, J. R., Harada, T., Herbert, R. A., Maronpot, R. R., Nolte, T., Rehg, J. E., Rittinghausen, S., & Rosol, T. J. (2016). Recommendations from the INHAND apoptosis/necrosis working group. Toxicologic Pathology, 44, 173–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Milner, D. J., Weitzer, G., Tran, D., Bradley, A., & Capetanaki, Y. (1996). Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. The Journal of Cell Biology, 134, 1255–1270.

    Article  CAS  PubMed  Google Scholar 

  56. Pawlak, A., Gil, R., Kulawik, T., Pronicki, M., Karkucińska-Więckowska, A., Szymańska-Dębińska, T., Gil, K., Lagwinski, N., & Czarnowska, E. (2012). Type of desmin expression in cardiomyocytes—A good marker of heart failure development in idiopathic dilated cardiomyopathy. Journal of Internal Medicine, 272, 287–297.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, Y., Xuan, L., Cui, X., Wang, Y., Chen, S., Wei, C., & Zhao, M. (2017). Ibutilide treatment protects against ER stress induced apoptosis by regulating calumenin expression in tunicamycin treated cardiomyocytes. PLoS ONE, 12, e0173469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colak, M., Parlakpinar, H., Tasdemir, S., Samdanci, E., Kose, E., Polat, A., Sarihan, E., & Acet, A. (2012). Therapeutic effects of ivabradine on hemodynamic parameters and cardiotoxicity induced by doxorubicin treatment in rat. Human & Experimental Toxicology, 31, 945–954.

    Article  CAS  Google Scholar 

  59. Yuan, Y., Zhou, H., Wu, Q. Q., Li, F. F., Bian, Z. Y., Deng, W., Zhou, M. Q., & Tang, Q. Z. (2016). Puerarin attenuates the inflammatory response and apoptosis in LPS-stimulated cardiomyocytes. Experimental and Therapeutic Medicine, 11, 415–420.

    Article  CAS  PubMed  Google Scholar 

  60. Fujii, M., Sherchan, P., Soejima, Y., Doycheva, D., & Zhang, J. H. (2016). Subarachnoid hemorrhage-triggered acute hypotension is associated with left ventricular cardiomyocyte apoptosis in a rat model. In Brain edema XVI (pp 145–150). New York: Springer.

    Chapter  Google Scholar 

  61. Riezzo, I., Centini, F., Neri, M., Rossi, G., Spanoudaki, E., Turillazzi, E., & Fineschi, V. (2009). Brugada-like EKG pattern and myocardial effects in a chronic propofol abuser. Clinical Toxicology, 47, 358–363.

    Article  PubMed  Google Scholar 

  62. Tanriverdi, L. H., Parlakpinar, H., Ozhan, O., Ermis, N., Polat, A., Vardi, N., Tanbek, K., Yildiz, A., & Acet, A. (2017). Inhibition of NADPH oxidase by apocynin promotes myocardial antioxidant response and prevents isoproterenol-induced myocardial oxidative stress in rats. Free Radical Research, 51, 772–786.

    Article  CAS  PubMed  Google Scholar 

  63. Couet, J., Belanger, M. M., Roussel, E., & Drolet, M. C. (2001). Cell biology of caveolae and caveolin. Advanced Drug Delivery Reviews, 49(3), 223–235.

    Article  CAS  PubMed  Google Scholar 

  64. Engelman, J. A., Zhang, X. L., Razani, B., Pestell, R. G., & Lisanti, M. P. (1999). p42/44 MAP Kinase-dependent and-independent Signaling Pathways Regulate Caveolin-1 Gene Expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. Journal of Biological Chemistry, 274, 32333–32341.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by a research grant from the Scientific and Technological Research Council of Turkey (Project details: 3001/115S818 belongs to Dr. Parlakpinar). Authors thank Azibe Yıldız, PhD for technical assistance and histological interpretation.

Author information

Authors and Affiliations

Authors

Contributions

HP and AA are the coordinators of this study and they planned the study protocol design. LHT, HP, NE, and OO made the mandatory requirements for the study. LHT and OO were responsible for drug administration and data collection. HP and OO performed the surgical procedures. Hemodynamic parameters and cardiac results including ECG records were evaluated by NE and HP, NE performed the ECHO, LHT and OO conducted the biochemical analyses. The histopathological evaluations carried out by NV whereas YC performed genetic experiments. CC was responsible for data and statistical analysis and interpretation of the results. LHT was responsible for the design of figures and tables. This manuscript was written by HP, LHT, OO, NE, and YC The final manuscript is revised collaboratively by HP, LHT, and AA.

Corresponding author

Correspondence to Hakan Parlakpinar.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interests.

Additional information

Handling Editor: Lorraine Chalifour.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1366 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parlakpinar, H., Ozhan, O., Ermis, N. et al. Acute and Subacute Effects of Low Versus High Doses of Standardized Panax ginseng Extract on the Heart: An Experimental Study. Cardiovasc Toxicol 19, 306–320 (2019). https://doi.org/10.1007/s12012-019-09512-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-019-09512-1

Keywords

Navigation