Skip to main content
Log in

The Concentration of Radionuclides (Lead-210, Polonium-210, and Cesium-137) in the Muscle of Sardine Fish: a Global Systematic Review, Meta-analysis, and Exposure Assessment 

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

With the increasing use of nuclear technology, concerns about the contamination of water resources with radionuclides and the contamination of seafood are increasing. In the current investigation, a meta-analysis and exposure assessment regarding the concentration of radionuclides, including lead-210 (Pb-210), polonium -210 (Po-210), and cesium-137 (Cs-137) in the muscle of Sardin fish were conducted. In this regard, some databases including Scopus and PubMed were selected to retrieve papers on the concentration of radionuclides in the muscle of Sardin fish from January 2000 to 25 June 2021. The used keywords were polonium-210, natural radioactivity, lead-210, radiocesium, cesium-137, radionuclides, radium-226, seafood, marine foods, fish, sardine fish, sardinella longiceps, and Clupeidae. Also, effective dose (ED) was calculated to estimate carcinogenic risk in Sardine fish consumers. The rank order of radionuclides in the muscle of sardine fish was Po-210 (31.50 Bq/kg) > Pb-210 (3.34 Bq/kg) > Cs-137 (0.48 Bq/kg). Based on level of Pb-210 rank of countries was France (12.00 Bq/kg) > India (4.06 Bq/kg) > Turkey (3.29 Bq/kg) > Spain (1.00 Bq/kg) > Slovenia (0.55 Bq/kg); Po-210 was Turkey (74.96 Bq/kg) > Spain (48.00 Bq/kg) > France (31.500 Bq/kg > India (30.25 Bq/kg) > Slovenia (25.00 Bq/kg) > Kuwait (7.28 Bq/kg) and also, Cs-137 was Japan (1.22 Bq/kg) > Croatia (0.18 Bq/kg) > India (0.23 Bq/kg). The lowest and highest ED of 210Po was observed in Kuwait (5.10E-04 msv/y, female) and France (3.14E-01, male); Pb-210, Slovenia (7.24E-05 msv/y, male) and France (1.48E-02 msv/y, female), and Cs-137, Croatia (8.47E-08 msv/y, male) and Japan (2.54E-05 msv/y, female), respectively. The risk assessment shows that the exposed population are at an acceptable range of risk (H < 1 mSv/y).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. He G, Liu X, Cui Z (2021) Achieving global food security by focusing on nitrogen efficiency potentials and local production. Glob Food Sec 29:100536

    Article  Google Scholar 

  2. Hu X, Zhang P, Wang D, Jiang J, Chen X, Liu Y, Zhang Z, Tang BZ, Li P (2021) AIEgens enabled ultrasensitive point-of-care test for multiple targets of food safety: aflatoxin B1 and cyclopiazonic acid as an example. Biosens Bioelectron 182:113188

    Article  CAS  PubMed  Google Scholar 

  3. Madanayake NH, Hossain A, Adassooriya NM (2021) Nanobiotechnology for agricultural sustainability, and food and environmental safety. Qual Assur Safet Crops & Foods 13(1):20–36

    Article  CAS  Google Scholar 

  4. Amiri S, Moghanjougi ZM, Bari MR, Khaneghah AM (2021) Natural protective agents and their applications as bio-preservatives in the food industry: an overview of current and future applications. Ital J Food Sci 33(SP1):55–68

    Article  CAS  Google Scholar 

  5. Carvalho FP (2018) Radionuclide concentration processes in marine organisms: a comprehensive review. J Environ Radioact 186:124–130

    Article  CAS  PubMed  Google Scholar 

  6. Su L, Shi W, Chen X, Meng L, Yuan L, Chen X, Huang G (2021) Simultaneously and quantitatively analyze the heavy metals in Sargassum fusiforme by laser-induced breakdown spectroscopy. Food Chem 338:127797

    Article  CAS  PubMed  Google Scholar 

  7. Bounar A, Boukaka K, Leghouchi E (2020) Determination of heavy metals in tomatoes cultivated under green houses and human health risk assessment. Qual Assur Saf Crops Foods 12(1):76–86

    Article  CAS  Google Scholar 

  8. Rezaei M, Malekirad AA, Jabbari M, Karimi-Dehkordi M, Ghasemidehkordi B, Teimoory H, Fakhri Y, Khaneghah AM (2020) Essential elements in the different type of fruits, soil and water samples collected from Markazi province, Iran: a health risk assessment study. Qual Assur Saf Crops Foods 12(3):111–125

    Article  CAS  Google Scholar 

  9. Gao L, Huang X, Wang P, Chen Z, Hao Q, Bai S, Tang S, Li C, Qin D (2022) Concentrations and health risk assessment of 24 residual heavy metals in Chinese mitten crab (Eriocheir sinensis). Qual Assur Saf Crops Foods 14(1):82–91

    Article  CAS  Google Scholar 

  10. Heshmati A, Mehri F, Karami-Momtaz J, Khaneghah AM (2020) The concentration and health risk of potentially toxic elements in black and green tea—both bagged and loose-leaf. Qual Assur Saf Crops Foods 12(3):140–150

    Article  Google Scholar 

  11. Chowdhury MJ, Blust R (2001) A mechanistic model for the uptake of waterborne strontium in the common carp (Cyprinus carpio L.). Environmental science & technology 35 (4):669–675

  12. Wada T, Konoplev A, Wakiyama Y, Watanabe K, Furuta Y, Morishita D, Kawata G, Nanba K (2019) Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. J Environ Radioact 204:132–142

    Article  CAS  PubMed  Google Scholar 

  13. Luna-Porres MY, Rodríguez-Villa MA, Herrera-Peraza EF, Renteria-Villalobos M, Montero-Cabrera ME (2014) Potential human health risk by metal (loid) s, 234,238 U and 210Po due to consumption of fish from the “Luis L. Leon” reservoir (Northern México). Int J Environ Res Public Health 11 (7):6612–6638

  14. Khan MF, Wesley SG (2016) Baseline concentration of polonium-210 (210Po) in tuna fish. Mar Pollut Bull 107(1):379–382

    Article  CAS  PubMed  Google Scholar 

  15. i Batlle JV, Aoyama M, Bradshaw C, Brown J, Buesseler KO, Casacuberta N, Christl M, Duffa C, Impens N, Iosjpe M, (2018) Marine radioecology after the Fukushima Dai-ichi nuclear accident: are we better positioned to understand the impact of radionuclides in marine ecosystems? Sci Total Environ 618:80–92

    Article  Google Scholar 

  16. Osburn WS (2019) Radioecology. In: Arctic and alpine environments. Routledge, pp 875–903

  17. Linsley G, Sjöblom K-L, Cabianca T (2005) Overview of point sources of anthropogenic radionuclides in the oceans. In: Radioactivity in the environment, vol 6. Elsevier, pp 109–138

  18. Sivaperumal P, Kumar P, Kamala K, Ambekar AA, Ponnusamy K, Rajaram R, Pal A (2020) Health risk assessment for radionuclide contamination in seafood. Encyclopedia of Marine Biotechnology:2881–2894

  19. Garcia-Orellana J, López-Castillo E, Casacuberta N, Rodellas V, Masqué P, Carmona-Catot G, Vilarrasa M, García-Berthou E (2016) Influence of submarine groundwater discharge on 210Po and 210Pb bioaccumulation in fish tissues. J Environ Radioact 155:46–54

    Article  PubMed  Google Scholar 

  20. Aközcan S (2013) Levels of 210Po in some commercial fish species consumed in the Aegean Sea coast of Turkey and the related dose assessment to the coastal population. J Environ Radioact 118:93–95

    Article  PubMed  Google Scholar 

  21. Çatal EM, Uğur A, Özden B, Filizok I (2012) 210Po and 210Pb variations in fish species from the Aegean Sea and the contribution of 210Po to the radiation dose. Mar Pollut Bull 64(4):801–806

    Article  PubMed  Google Scholar 

  22. Misdaq M, Aitayoub A, Chaouqi A (2018) Analysis of 238U, 232Th, 222Rn, and 220Rn in fresh and canned marine fish samples using solid state nuclear track detectors and resulting alpha radiation doses to adult consumers. Health Phys 114(4):436–449

    Article  CAS  PubMed  Google Scholar 

  23. Pestana CMP (2007) Conservação de filetes de sardinha, Sardina pilchardus, sujeitos a estabilização com gás solúvel (SGS), embalados em ar, vácuo e atmosfera modificada.

  24. Food F (2003) Agriculture organization. Gender and access to land, FAO land tenure studies 4

  25. Ścibor M, Balcerzak B, Galbarczyk A, Targosz N, Jasienska G (2019) Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2. 5 and to characteristics of homes. Sustain Cities Soc 48:101537

  26. Group I (2020) Sardine market: global industry trends, share, size, growth, opportunity and forecast 2021–2026. https://www.imarcgroup.com/sardine-market.

  27. Khan MF, Benjamin J, Wesley SG (2011) Radiotoxicity via intake of marine organisms: exposure and risk assessment in South Indians. Toxicol Environ Chem 93(3):549–564

    Article  CAS  Google Scholar 

  28. Khan MF, Wesley SG (2011) Assessment of health safety from ingestion of natural radionuclides in seafoods from a tropical coast. India Marine pollution bulletin 62(2):399–404

    Article  CAS  PubMed  Google Scholar 

  29. Khan MF, Wesley SG (2012) Radionuclides in resident and migratory fishes of a wedge bank region: estimation of dose to human beings. South India Mar Pollut Bull 64(10):2224–2232

    Article  CAS  PubMed  Google Scholar 

  30. Khan MF, Wesley SG (2012) RETRACTION: Biomonitoring fallout 137Cs in resident and migratory fishes collected along the southern coast of India and assessment of dose.

  31. Görür FK, Keser R, Akçay N, Dizman S (2012) Radioactivity and heavy metal concentrations of some commercial fish species consumed in the Black Sea Region of Turkey. Chemosphere 87(4):356–361

    Article  Google Scholar 

  32. Mahmood W, ZUy, Yii M-W, (2012) Marine radioactivity concentration in the Exclusive Economic Zone of Peninsular Malaysia: 226Ra, 228Ra and 228Ra/226Ra. J Radioanal Nucl Chem 292(1):183–192

    Article  Google Scholar 

  33. Pearson AJ, Gaw S, Hermanspahn N, Glover CN (2016) Activity concentrations of 137Caesium and 210Polonium in seafood from fishing regions of New Zealand and the dose assessment for seafood consumers. J Environ Radioact 151:542–550

    Article  CAS  PubMed  Google Scholar 

  34. Higgins JP, Green S (2011) Cochrane handbook for systematic reviews of interventions, vol 4. John Wiley & Sons

    Google Scholar 

  35. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6(7):15–25

    Article  Google Scholar 

  36. Peck R, Olsen C, Devore JL (2015) Introduction to statistics and data analysis. Cengage Learning

    Google Scholar 

  37. Quan H, Zhang J (2003) Estimate of standard deviation for a log-transformed variable using arithmetic means and standard deviations. Stat Med 22(17):2723–2736

    Article  PubMed  Google Scholar 

  38. Higgins J, White IR, Anzures-Cabrera J (2008) Meta-analysis of skewed data: combining results reported on log-transformed or raw scales. Stat Med 27(29):6072–6092

    Article  PubMed  PubMed Central  Google Scholar 

  39. Higgins., Thompson S, (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  40. Uwatse O, Olatunji M, Khandaker M, Amin Y, Bradley D, Alkhorayef M, Alzimami K (2015) Measurement of natural radioactivity in infant powdered milk and estimation of the corresponding annual effective dose. Environ Eng Sci J

  41. Jemii E, Alharbi T (2018) Measurements of natural radioactivity in infant formula and radiological risk assessment. J Radioanal Nucl Chem 315(2):157–161

    Article  CAS  Google Scholar 

  42. Fakhri Y, Sarafraz M, Pilevar Z, Daraei H, Rahimizadeh A, Kazemi S, Khedher KM, Thai VN, Ba LH, Mousavi Khaneghah A (2022) The concentration and health risk assessment of radionuclides in the muscle of tuna fish: a worldwide systematic review and meta-analysis. Chemosphere 289:133149. https://doi.org/10.1016/j.chemosphere.2021.133149

    Article  CAS  PubMed  Google Scholar 

  43. data Owi (2018) Fish-and-seafood-consumption-per-capita. https://ourworldindata.org/grapher/fish-and-seafood-consumption-per-capita?tab=table. vol 5.

  44. ASF (2018) Top 10 list for seafood consumption. https://aboutseafood.com/about/top-ten-list-for-seafood-consumption/. vol 5.

  45. IAEA (2011) Radiation protection and safety of radiation source: international basic safety standard. General Safety Requirements. IAEA, Vienna, vol 206.

  46. WHO (2016) Radiation protection and safety of radiation sources: international basic safety standards. General safety requirements. Pt. 3 (Spanish Edition).

  47. UNSCEAR S (2000) United Nations Scientific Committee on the Effects of Atomic Radiation. vol 2. United Nations New York,

  48. ICRP (2020) Foundation docs optimisation; dose to individual. https://www.icrp.org/consultation_viewitem.asp?guid=%7BAA637952-8C7E-4FDF-92B7-10F14A67AACF%7D. vol 5.

  49. Strady E, Harmelin-Vivien M, Chiffoleau JF, Veron A, Tronczynski J, Radakovitch O (2015) 210Po and 210Pb trophic transfer within the phytoplankton–zooplankton–anchovy/sardine food web: a case study from the Gulf of Lion (NW Mediterranean Sea). J Environ Radioact 143:141–151

    Article  CAS  PubMed  Google Scholar 

  50. Ababneh ZQ, Ababneh AM, Almasoud FI, Alsagabi S, Alanazi YJ, Aljulaymi AA, Aljarrah KM (2018) Assessment of the committed effective dose due to the 210Po intake from fish consumption for the Arabian Gulf population. Chemosphere 210:511–515

    Article  CAS  PubMed  Google Scholar 

  51. Štrok M, Smodiš B (2011) Levels of 210Po and 210Pb in fish and molluscs in Slovenia and the related dose assessment to the population. Chemosphere 82(7):970–976

    Article  PubMed  Google Scholar 

  52. Franić Z, Petrinec B, Branica G, Marović G, Kubelka D, Franić Z (2012) Post-chernobyl investigations of radiocaesium activity concentrations in Adriatic Sea pilchards. Radiat Prot Dosim 151(2):314–322

    Article  Google Scholar 

  53. Kül M, Görgün AU, Filizok I (2020) Activity concentrations of 210 Po and 210 Pb in fish and mussels in İzmir, Turkey, and the related health risk assessment (dose assessment and pesticide levels) to the consumers. Environ Monit Assess 192(8):1–11

    Article  Google Scholar 

  54. Aközcan S, Uğur A (2013) Activity levels of 210Po and 210Pb in some fish species of the Izmir Bay (Aegean Sea). Mar Pollut Bull 66(1–2):234–238

    Article  PubMed  Google Scholar 

  55. Kılıç Ö, Belivermiş M, Gönülal O, Sezer N, Carvalho FP (2018) 210Po and 210Pb in fish from northern Aegean Sea and radiation dose to fish consumers. J Radioanal Nucl Chem 318(2):1189–1199

    Article  Google Scholar 

  56. Musthafa MS, Krishnamoorthy R (2012) Estimation of 210 Po and 210 Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India. Environ Monit Assess 184(10):6253–6260

    Article  CAS  PubMed  Google Scholar 

  57. Uddin S, Aba A, Fowler S, Behbehani M, Ismaeel A, Al-Shammari H, Alboloushi A, Mietelski J, Al-Ghadban A, Al-Ghunaim A (2015) Radioactivity in the Kuwait marine environment—baseline measurements and review. Mar Pollut Bull 100(2):651–661

    Article  CAS  PubMed  Google Scholar 

  58. Sankaran Pillai G, Satheeshkumar G, Shahul Hameed P (2018) Distribution and bioaccumulation Of 210Po and 210Pb in abiotic and biotic components of the Bay of Bengal. Radiat Prot Dosim 182(2):273–284

    CAS  Google Scholar 

  59. Milenkovic B, Stajic JM, Stojic N, Pucarevic M, Strbac S (2019) Evaluation of heavy metals and radionuclides in fish and seafood products. Chemosphere 229:324–331

    Article  CAS  PubMed  Google Scholar 

  60. Lee S, Oh J, Lee K, Lee J, Hwang S, Lee M, Kwon E, Kim C, Choi I, Yeo I (2018) Evaluation of abundance of artificial radionuclides in food products in South Korea and sources. J Environ Radioact 184:46–52

    Article  PubMed  Google Scholar 

  61. Banno Y, Namikawa M, Miwa M, Ban S, Orito T, Semura S, Kawakami M, Miyake S, Ishikawa Y (2013) Monitoring of radioactive substances in foods distributed in Kyoto, Japan (1991–2011).-Comparison of detection rates and concentrations before and after the Fukushima Daiichi Nuclear power plant accident. Shokuhin eiseigaku zasshi Journal of the Food Hygienic Society of Japan 54 (3):178–187

  62. Nadal M, Casacuberta N, Garcia-Orellana J, Ferré-Huguet N, Masqué P, Schuhmacher M, Domingo JL (2011) Human health risk assessment of environmental and dietary exposure to natural radionuclides in the Catalan stretch of the Ebro River, Spain. Environ Monit Assess 175(1):455–468

    Article  CAS  PubMed  Google Scholar 

  63. Miki S, Fujimoto K, Shigenobu Y, Ambe D, Kaeriyama H, Takagi K, Ono T, Watanabe T, Sugisaki H, Morita T (2017) Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident. Fish Oceanogr 26(2):221–233

    Article  Google Scholar 

  64. Inoue M, Yamashita S, Takehara R, Miki S, Nagao S (2019) Low levels of Fukushima Dai-ichi NPP-derived radiocesium in marine products from coastal areas in the Sea of Japan (2012–2017). Appl Radiat Isot 145:187–192

    Article  CAS  PubMed  Google Scholar 

  65. Belharet M, Charmasson S, Tsumune D, Arnaud M, Estournel C (2019) Numerical modelling of 137Cs content in the pelagic species of the Japanese Pacific coast following the Fukushima Dai-ichi nuclear power plant accident using a size-structured food-web model. PLoS ONE 14(3):e0212616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pearson AJ, Gaw S, Hermanspahn N, Glover CN (2016) Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet. J Environ Radioact 151:601–608

    Article  CAS  PubMed  Google Scholar 

  67. Khot M, Sivaperumal P, Jadhav N, Chinnaesakki S, Bara S, Chakraborty S, Pawase A, Jaiswar A (2018) Baseline radionuclide concentration in selected marine organisms around the coastal areas of Ratnagiri and Sindhudurg districts, west coast of Maharashtra, India. Mar Pollut Bull 135:1051–1054

    Article  CAS  PubMed  Google Scholar 

  68. Musthafa MS, Krishnamoorthy R (2012) Estimation of 210Po and 210Pb and its dose to human beings due to consumption of marine species of Ennore Creek, South India. Environ Monit Assess 184(10):6253–6260

    Article  CAS  PubMed  Google Scholar 

  69. Banno Y, Namikawa M, Miwa M, Ban S, Orito T, Semura S, Kawakami M, Doi N, Miyake S, Ishikawa Y (2013) Monitoring of radioactive substances in foods distributed in Kyoto, Japan (1991–2011)—comparison of detection rates and concentrations before and after the Fukushima Daiichi nuclear power plant accident. Food Hyg Saf Sci (Shokuhin Eiseigaku Zasshi) 54 (3):178–187

  70. Uddin S, Fowler S, Behbehani M, Metian M (2017) 210Po bioaccumulation and trophic transfer in marine food chains in the northern Arabian Gulf. J Environ Radioact 174:23–29

    Article  CAS  PubMed  Google Scholar 

  71. Kül M, Uğur Görgün A, Filizok I (2020) Activity concentrations of 210Po and 210Pb in fish and mussels in İzmir, Turkey, and the related health risk assessment (dose assessment and pesticide levels) to the consumers. Environ Monit Assess 192(8):1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadolah Fakhri.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

The authors declare their consent to participate in this article.

Consent for Publication

The authors declare their consent to publish this article.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, Y., Mahmudiono, T., Ranaei, V. et al. The Concentration of Radionuclides (Lead-210, Polonium-210, and Cesium-137) in the Muscle of Sardine Fish: a Global Systematic Review, Meta-analysis, and Exposure Assessment . Biol Trace Elem Res 201, 2011–2021 (2023). https://doi.org/10.1007/s12011-022-03289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-022-03289-1

Keywords

Navigation