Skip to main content
Log in

The Protection of Selenium Against Cadmium-Induced Mitochondrial Damage via the Cytochrome P450 in the Livers of Chicken

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a heavy metal in natural environment and has extreme toxicity. Selenium (Se) has protective effect against heavy metal-induced injury or oxidative stress. Cytochrome P450 (CYP450) enzymes are a family of hemoproteins primarily responsible for detoxification functions. In order to investigate whether CYP450 is related to the damage of livers caused by Cd exposure, we chose forty-eight 28-day-old healthy Hailan cocks for four groups: control group, Se group, Cd group, and Se + Cd group. After 90-day treatment, euthanized for experiment. Based on an established subchronic Cd poisoning model in chicken, this experiment was designed to detect mitochondrial structure, malondialdehyde (MDA), glutathione (GSH), DNA and protein crosslink (DPC) and protein carbonyl (PCO) content, the CYP450 and b5 contents, the aminopyrine-N-demethylase (AND), erythromycin N-demethylase (ERND), aniline 4-hydroxylase (AH) and NADPH-cytochrome C reducatase (CR) activities, and mRNA expression level in the livers. The present results indicated that the MDA content, PCO content, and DPC index in Cd group were higher than those observed in other three groups. Most of the mitochondrial structure is incomplete in Cd group. The contents of CYP450 and b5 were decreased in Cd group. The activities of AND, ERND, AH, and CR got reduced after Cd exposure, as observed in CYP450 gene expression. Our results showed that CYP450 system was involved in the entire process of injury and protection. This research provides a comprehensive evaluation of the oxidative stress effects of Cd related to CYP450 in chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dorian C, Gattone VH 2nd, Klaasen CD (1992) Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules—a light microscopic autoradiography study with 109CdMT. Toxicol Appl Pharmacol 114:173–181

    Article  CAS  PubMed  Google Scholar 

  2. Chen M, Li X, Fan R, Yang J, Jin X, Hamid S, Xu S (2017) Cadmium induces BNIP3 -dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 194:396–402

    Article  CAS  PubMed  Google Scholar 

  3. Yamano T, DeCicco LA, Rikans LE (2000) Attenuation of cadmium-induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol 162:68–75

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Zheng Z, Cai J, Liu Q, Yang J, Gong Y, Wu M, Shen Q, Xu S (2017) Effect of cadmium on oxidative stress and immune function of common carp (Cyprinus carpio L.) by transcriptome analysis. Aquat Toxicol 192:171–177

    Article  CAS  PubMed  Google Scholar 

  5. Pathak N, Khandelwal S (2006) Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology 220:26–36

    Article  CAS  PubMed  Google Scholar 

  6. Zhou YJ, Zhang SP, Liu CW, Ca i YQ (2009) The protection of selenium on ROS mediated-apoptosis by mitochondria dysfunction in cadmium-induced LLC-PK(1) cells. Toxicol in Vitro 23:288–294

    Article  CAS  PubMed  Google Scholar 

  7. Chu BX, Fan RF, Lin SQ, Yang DB, Wang ZY, Wang L (2018) Interplay between autophagy and apoptosis in lead (II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 182:184–193

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Zhao H, Liu J, Shao Y, Li J, Luo L, Xing M (2018) Copper and arsenic-induced oxidative stress and immune imbalance are associated with activation of heat shock proteins in chicken intestines. Int Immunopharmacol 60:64–75

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, Xing M (2018) Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. Chemosphere 206:597–605

    Article  CAS  PubMed  Google Scholar 

  10. Song XB, Liu G, Liu F, Yan ZG, Wang ZY, Liu ZP, Wang L (2017) Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells. Cell Death Dis 8:e2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guengerich FP (2003) Cytochromes P450, drugs, and diseases. Mol Interv 3:194–204

    Article  CAS  PubMed  Google Scholar 

  12. Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14(6):611–650

    Article  CAS  PubMed  Google Scholar 

  13. Dong X, Zhu L, Wang J, Wang J, Xie H, Hou X, Jia W (2009) Effects of atrazine on cytochrome P450 enzymes of zebrafish (Danio rerio). Chemosphere 77:404–412

    Article  CAS  PubMed  Google Scholar 

  14. Lu X, Li Y, Thunders M, Cavanagh J, Matthew C, Wang X, Zhou X, Qiu J (2017) Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation? Chemosphere 171:485–490

    Article  CAS  PubMed  Google Scholar 

  15. Baker JR, Satarug S, Reilly PE, Edwards RJ, Ariyoshi N, Kamataki T, Moore MR, Williams DJ (2001) Relationships between non-occupational cadmium exposure and expression of nine cytochrome P450 forms in human liver and kidney cortex samples. Biochem Pharmacol 62:713–721

    Article  CAS  PubMed  Google Scholar 

  16. Reed JR, Cawley GF, Ardoin TG, Dellinger B, Lomnicki SM, Hasan F, Kiruri LW, Backes WL (2014) Environmentally persistent free radicals inhibit cytochrome P450 activity in rat liver microsomes. Toxicol Appl Pharmacol 277(2):200–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mi Y, Li J, Lin X, Liu X, Zhang C (2018) Grape seed Proanthocyanidin extract prevents ovarian aging by inhibiting oxidative stress in the hens. Oxidative Med Cell Longev:1–16

  18. Tobiasz A, Walas S, Filek M, Mrowiec H, Samsel K, Sieprawska A, Hartikainen H (2014) Effect of selenium on distribution of macro- and micro-elements to different tissues during wheat ontogeny. Biol Plant 58:370–374

    Article  CAS  Google Scholar 

  19. Xi J, Zhe X, Xia Z, Chen M, Xu S (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266

    Article  CAS  Google Scholar 

  20. Yao H, Liu W, Zhao W, Fan R, Zhao X, Khoso PA, Zhang Z, Xu S (2014) Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 4:64032–64042

    Article  CAS  Google Scholar 

  21. Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830:3112–3120

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Xing M, Chen M, Zhao J, Fan R, Zhao X, Cao C, Yang J, Zhang Z, Xu S (2017) Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotoxicol & Environ Saf 139:447–453

    Article  CAS  Google Scholar 

  23. Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 143:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Zhu YH, Cheng XY, Zhang ZW, Xu SW (2012) The protection of selenium against cadmium-induced cytotoxicity via the heat shock protein pathway in chicken splenic lymphocytes. Molecules 17:14565–14572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erkekoglu P, Giray BK, Caglayan A, Hincal F (2012) Selenium and/or iodine deficiency alters hepatic xenobiotic metabolizing enzyme activities in rats. J Trace Elem Med Biol 26:36–41

    Article  CAS  PubMed  Google Scholar 

  26. Zhu WJ, Zhang ZW, Wang XS, Xu SW, Li M, Li S (2014) Effects of avermectin on microsomal cytochrome P450 enzymes in the liver and kidneys of pigeons. Environ Toxicol Pharmacol 38:562–569

    Article  CAS  PubMed  Google Scholar 

  27. Dupont I, Berthou F, Bodenez P, Bardou L, Guirriec C, Stephan N, Dreano Y, Lucas D (1999) Involvement of cytochromes P-450 2E1 and 3A4 in the 5-hydroxylation of salicylate in humans. Drug Metab Dispos 27:322

    CAS  PubMed  Google Scholar 

  28. Brattsten LB, Price SL, Gunderson CA (1980) Microsomal oxidases in midgut and fatbody tissues of a broadly herbivorous insect larva, Spodoptera eridania cramer (Noctuidae). Comp Biochem Physiol C: Comparative Pharmacology 66:231–237

    Article  Google Scholar 

  29. Fu Y, Li M, Liu C, Qu JP, Zhu WJ, Xing HJ, Xu SW, Li S (2013) Effect of atrazine and chlorpyrifos exposure on cytochrome P450 contents and enzyme activities in common carp gills. Ecotoxicol Environ Saf 94:28–36

    Article  CAS  PubMed  Google Scholar 

  30. Yang DB, Yang H, Wang L, Wang MG, Wang XY, Wang ZY (2017) Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux. Cell Death Dis 8:e3099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu L, Yang B, Cheng Y, Lin H (2015) Ameliorative effects of selenium on cadmium-induced oxidative stress and endoplasmic reticulum stress in the chicken kidney. Biol Trace Elem Res 167:308–319

    Article  CAS  PubMed  Google Scholar 

  32. Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109

    Article  CAS  PubMed  Google Scholar 

  33. Yang S, Zhang Z, He J, Li J, Zhang J, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148:53–60

    Article  CAS  PubMed  Google Scholar 

  34. Tretyakova NY, Th GA, Ji S (2015) DNA-protein cross-links: formation, structural identities, and biological outcomes. Acc Chem Res 48:1631–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tejaswi G, Suchitra MM, Rajasekhar D, Kiranmayi VS, Rao PVLNS (2017) Myeloperoxidase, protein carbonyls and oxidative stress in coronary artery disease. J Indian Coll Cardiol 7:149–152

  36. Tsikas D (2016) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 524:13–30

    Article  CAS  PubMed  Google Scholar 

  37. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ (2003) Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J Biol Chem 278:31426–31433

    Article  CAS  PubMed  Google Scholar 

  38. Schwedhelm E, Benndorf RA, Boger RH, Tsikas D (2007) Mass spectrometric analysis of F2-Isoprostanes: markers and mediators in human disease. Curr Pharm Anal 3:39–51

    Article  CAS  Google Scholar 

  39. Prieto I, Monsalve M (2017) ROS homeostasis, a key determinant in liver ischemic-preconditioning. Redox Biol 12:1020–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groehler TA, Kren S, Li Q, Robledovillafane M, Schmidt J, Garry M, Tretyakova N (2018) Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radic Biol Med 120:89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nag T, Ghosh A (2013) Cardiovascular disease risk factors in Asian Indian population: a systematic review. J Cardiovasc Dis Res 4:222–228

    PubMed  Google Scholar 

  42. Garibaldi S, Aragno I, Odetti P, Marinari UM (1994) Relationships between protein carbonyls, retinol and tocopherols level in human plasma. Biochem Mol Biol Int 34:729–736

    CAS  PubMed  Google Scholar 

  43. Zhao P, Guo Y, Zhang W, Chai H, Xing H, Xing M (2016) Neurotoxicity induced by arsenic in Gallus Gallus: regulation of oxidative stress and heat shock protein response. Chemosphere 166:238–245

    Article  CAS  PubMed  Google Scholar 

  44. Sereemaspun A, Hongpiticharoen P, Rojanathanes R, Maneewattanapinyo P (2008) Inhibition of human cytochrome P450 enzymes by metallic nanoparticles: a preliminary to Nanogenomics. Int J Pharmacol 4:492–495

    Article  CAS  Google Scholar 

  45. Fröhlich E, Kueznik T, Samberger C, Roblegg E, Wrighton C, Pieber TR (2010) Size-dependent effects of nanoparticles on the activity of cytochrome P450 isoenzymes. Toxicol Appl Pharmacol 242:326–332

    Article  CAS  PubMed  Google Scholar 

  46. Rayman MP, Lyons TP, Cole DJA (2000) The importance of selenium to human health. Lancet 356:233–241

    Article  CAS  PubMed  Google Scholar 

  47. Yang J, Zhang Y, Hamid S, Cai J, Liu Q, Li H, Zhao R, Wang H, Xu S, Zhang Z (2017) Interplay between autophagy and apoptosis in selenium deficient cardiomyocytes in chicken. J Inorg Biochem 170:17–25

    Article  CAS  PubMed  Google Scholar 

  48. Liu T, Yang T, Xu Z, Tan S, Pan T, Wan N, Li S (2018) MicroRNA-193b-3p regulates hepatocyte apoptosis in selenium-deficient broilers by targeting MAML1. J Inorg Biochem 186:235–245

    Article  CAS  PubMed  Google Scholar 

  49. Karabulut-Bulan O, Bolkent S, Yanardag R, Bilgin-Sokmen B (2008) The role of vitamin C, vitamin E, and selenium on cadmium-induced renal toxicity of rats. Drug Chem Toxicol 31:413–426

    Article  CAS  PubMed  Google Scholar 

  50. Wang W, Chen M, Jin X, Li X, Yang Z, Lin H, Xu S (2018) H2S induces Th1/Th2 imbalance with triggered NF-κB pathway to exacerbate LPS-induce chicken pneumonia response. Chemosphere 208:241–246

    Article  CAS  PubMed  Google Scholar 

  51. Jin X, Jia T, Liu R, Xu S (2018) The antagonistic effect of selenium on cadmium-induced apoptosis via PPAR-γ/PI3K/Akt pathway in chicken pancreas. J Hazard Mater 357:355–362

    Article  CAS  PubMed  Google Scholar 

  52. Li JL, Gao R, Li S, Wang JT, Tang ZX, Xu SW (2010) Testicular toxicity induced by dietary cadmium in cocks and ameliorative effect by selenium. Biometals 23:695–705

    Article  CAS  PubMed  Google Scholar 

  53. Bansal MP, Kaur P (2005) Selenium, a versatile trace element: current research implications. Indian J Exp Biol 43:1119–1129

    CAS  PubMed  Google Scholar 

  54. Elsharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity induced by cadmium in rats. Toxicology 235:185–193

    Article  CAS  Google Scholar 

  55. Lazarus M, Orct T, Jurasoviæ J, Blanuša M (2009) The effect of dietary selenium supplementation on cadmium absorption and retention in suckling rats. Biometals 22:973–983

    Article  CAS  PubMed  Google Scholar 

  56. Gonzalez FJ (2005) Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res 569:101–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We also thank the members of the veterinary internal medicine laboratory at the College of Veterinary Medicine, Northeast Agricultural University for their help in collecting the samples. The authors also thank Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine.

Funding

This study was supported by the National Natural Science Foundation of China (31472161).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Teng or Shu Li.

Ethics declarations

The Institutional Animal Care and Use Committee of Northeast Agricultural University approved all procedures used in this experiment.

Additional information

All of the authors have read the manuscript and agreed to submit it in its current form for consideration for publication in the Biological Trace Element Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, Y., Chi, Q., Teng, X. et al. The Protection of Selenium Against Cadmium-Induced Mitochondrial Damage via the Cytochrome P450 in the Livers of Chicken. Biol Trace Elem Res 190, 484–492 (2019). https://doi.org/10.1007/s12011-018-1557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-018-1557-x

Keywords

Navigation