Skip to main content
Log in

Relationships among Iron, Protein Oxidation and Lipid Peroxidation Levels in Rats with Alcohol-induced Acute Pancreatitis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

It has been previously shown that alcohol induces the damage of pancreatic parenchyma tissue, but the mechanism of this damage is still poorly understood. Assuming that oxygen radical damage may be the involved, we measured markers of oxidative damage in pancreatic tissue, blood serum, plasma, and whole blood of rats with early-stage alcohol-induced acute pancreatitis. Thirty-eight male Wistar rats were divided into three groups: the control group (group 1), the acute pancreatitis group 1 day (group 2), and 3 days (group 3) after the injection of ethyl alcohol into the common biliary duct, respectively. The levels of Fe in tissue and serum, whole blood viscosity, plasma viscosity, fibrinogen and homocysteine (Hcy) levels, erythrocyte and plasma malondialdehyde (MDA), and tissue and plasma protein carbonyl levels were found to be significantly higher in groups 2 and 3 than in group 1. However, the levels of reduced glutathione (GSH) in tissue and erythrocytes were significantly lower in groups 2 and 3 than in group 1. These results suggest that elevated Fe levels in serum and pancreatic tissue in rats with early-stage alcohol-induced acute pancreatitis is associated with various hemorheological changes and with oxidative damage of the pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chowdhury P, Gupta P (2006) Pathophysiology of alcoholic pancreatitis: an overview. World J Gastroenterol 12(46):7421–7427

    PubMed  CAS  Google Scholar 

  2. Saluja AK, Bhagat L (2003) Pathophysiology of alcohol-induced pancreatic injury. Pancreas 27:327–331

    Article  PubMed  CAS  Google Scholar 

  3. Andican G, Gelisgen R, Unal E, Tortum OB, Dervisoglu S, Karahasanoglu T et al (2005) Oxidative stress and nitric oxide in rats with alcohol-induced acute pancreatitis. World J Gastroenterol 11:2340–2345

    PubMed  CAS  Google Scholar 

  4. Unal E, Uzun H, Kusaslan K, Dogan M, Genc H, Gunes P et al (2005) Serum paraoxonase (a high-density lipoprotein-associated lipophilic antioxidant) activity and lipid profile in experimental acute pancreatitis. Pancreas 31:84–87

    Article  PubMed  CAS  Google Scholar 

  5. Guntupalli JN, Padala S, Gummuluri AV, Muktineni RK, Byreddy SR et al (2007) Trace elemental analysis of normal, benign hypertrophic and cancerous tissues of the prostate gland using the particle-induced X-ray emission technique. Eur J Cancer Prev 16(2):108–115

    Article  PubMed  CAS  Google Scholar 

  6. Halliwell B, Gutteridge JMC (1992) Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307:108–112

    Article  PubMed  CAS  Google Scholar 

  7. Weber H, Huhns S, Jonas L, Sparmann G, Bastian M, Schuff-Werner P (2007) Hydrogen peroxide-induced activation of defense mechanisms against oxidative stress in rat pancreatic acinar AR42J cells. Free Radic Biol Med 42(6):830–841

    Article  PubMed  CAS  Google Scholar 

  8. Herbert V, Shaw S, Jayatilleke E, Stopler-Kasdan T (1994) Most free-radical injury is iron-related: it is promoted by iron, hemin, holoferritin and vitamin C, and inhibited by desferoxamine and apoferritin. Stem Cells 12(3):289–303

    PubMed  CAS  Google Scholar 

  9. Kashiwagi M, Akimoto H, Goto J, Aoki T (1995) Analysis of zinc and other elements in rat pancreas, with studies in acute pancreatitis. J Gastroenterol 30:84–89

    Article  PubMed  CAS  Google Scholar 

  10. Ilback NG, Benyamin G, Lindh U, Fohlman J, Friman G (2003) Trace element changes in the pancreas during viral infection in mice. Pancreas 26(2):190–196

    Article  PubMed  Google Scholar 

  11. Committee on Care and Use of Laboratory Animals (CCLA) (1985) Guide for the care and use of laboratory animal. Institute of Laboratory Animal Resources, National Research Council, Washington, DC, p 83

    Google Scholar 

  12. Schoenberg MH, Buchler M, Gaspar M, Stinner A, Younes M, Melzner I et al (1990) Oxygen free radicals in acute pancreatitis of the rat. Gut 31:1138–1143

    Article  PubMed  CAS  Google Scholar 

  13. Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H, Akyolcu MC (2006) Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res 112(3):193–204

    Article  PubMed  CAS  Google Scholar 

  14. Karakoc Y, Yurdakos E, Gulyasar T, Mengi M, Barutcu UB (2003) Experimental stress-induced changes in trace element levels of various tissues in rats. J Trace Elem Exp Med 16:55–60

    Article  CAS  Google Scholar 

  15. Stocks J, Dormandy TL (1971) The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol 20:95–111

    Article  PubMed  CAS  Google Scholar 

  16. Buege JA, Aust STD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  PubMed  CAS  Google Scholar 

  17. Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  PubMed  CAS  Google Scholar 

  18. Levine RL, Wehr N, Williams JA, Stadtman ER, Shacter E (2000) Determination of carbonyl groups in oxidized proteins. Methods Mol Biol 99:15–24

    PubMed  CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:269–275

    Google Scholar 

  20. International Committee for Standardization in Heamatology (ICSH) (1984) Recommendation for a selected method for the measurement of plasma viscosity. J Clin Pathol 37:1147–1152

    Article  Google Scholar 

  21. Barutcu UB, Akyolcu MC, Toplan S, Karakoc Y, Kiziler AR, Oke N et al (1995) Effects of coronary artery diseases on haemorheological parameters and trace elements. J Basic Clin Physiol Pharmacol 6:289–294

    PubMed  CAS  Google Scholar 

  22. Fairbanks VF, Klee GC (1986) Biochemical aspects of hematology. In: Tietz NW (ed) Textbook of clinical chemistry. Saunders, Philadelphia, PA, pp 1532–1534

    Google Scholar 

  23. Urunuela A, Sevillano S, de la Mano AM, Manso MA, Orfao A, de Dios I (2002) Time-course of oxygen free radical production in acinar cells during acute pancreatitis induced by pancreatic duct obstruction. Biochim Biophys Acta 15:159–164

    Google Scholar 

  24. Tsai K, Wang SS, Chen TS, Kong CW, Chang FY, Lee SD et al (1998) Oxidative stress: an important phenomenon with pathogenetic significance in the progression of acute pancreatitis. Gut 42:850–855

    Article  PubMed  CAS  Google Scholar 

  25. Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidation of proteins. Physiological consequences. J Biol Chem 266(4):2005–2008

    PubMed  CAS  Google Scholar 

  26. Kallianpur AR (2005) Iron and oxidative injury—a commentary on “Fatty acid-mediated iron translocation: a synergistic mechanism of oxidative injury” by D. Yao et al. Free Radic Biol Med 39:1305–1309

    Article  PubMed  CAS  Google Scholar 

  27. Winterbourn CC, Bonham MJ, Buss H, Abu-Zidan FM, Windsor JA (2003) Elevated protein carbonyls as plasma markers of oxidative stress in acute pancreatitis. Pancreatology 3:375–382

    Article  PubMed  CAS  Google Scholar 

  28. Biemond P, Van Eijk HG, Swaak AJG, Koster JF (1984) Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes, possible mechanism in inflammatory diseases. J Clin Invest 73:1576–1579

    Article  PubMed  CAS  Google Scholar 

  29. Gutteridge JMC (1986) Iron promoters of the Fenton reaction and lipid peroxidation can be releated from haemoglobin by peroxides. FEBS Lett 201:291–295

    Article  PubMed  CAS  Google Scholar 

  30. Kayali R, Cakatay U, Uzun H, Genc H (2007) Gender difference as regards myocardial protein oxidation in aged rats: male rats have increased oxidative protein damage. Biogerontology 8(6):653–661

    Article  PubMed  CAS  Google Scholar 

  31. Kriuchyna IeA (2000) Lipid peroxidation, the antioxidant system and the trace element level in acute pancreatitis. Likar Sprava 2:34–37

    Google Scholar 

  32. Frenzer A, Butler WJ, Norton ID, Wilson JS, Apte MV, Pirola RC, Ryan P, Roberts-Thomson IC (2002) Polymorphism in alcohol-metabolizing enzymes, glutathione S-transferases and apolipoprotein E and susceptibility to alcohol-induced cirrhosis and chronic pancreatitis. J Gastroenterol Hepatol 17(2):177–182

    Article  PubMed  CAS  Google Scholar 

  33. Freeman BA, Crapo JD (1982) Biology of disease. Free radicals and tissue injury. Lab Invest 47:412–426

    PubMed  CAS  Google Scholar 

  34. Yarnell JWG, Baker IA, Sweetman PM, Bainton D, O’Brien JR, Whitehead PJ et al (1991) Fibrinogen, plasma viscosity and white blood cell count are major risk factors for ischemic heart disease. The Caephilly and Speedwell Heart Disease Studies. Circulation 83:836–844

    PubMed  CAS  Google Scholar 

  35. Mchedlishvili G (1998) Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation. Clin Hemorheol Microcirc 19:315–325

    PubMed  CAS  Google Scholar 

  36. Jung F, Pindur O, Kiesewetter H (1992) Plasma viscosity dependence on proteins and lipoproteins: results of the Aachen study. Clin Hemorheol 12:557–571

    Google Scholar 

  37. Yan L, Lei Z, Cui X, Chen H, Yang Y, Li L et al (1993) The role of hemorheologic disturbance in experimental acute pancreatitis. Huaxi Yike Daxue Xuebao 24:71–74

    PubMed  CAS  Google Scholar 

  38. Meng Y, Zhang M, Xu J, Liu XM, Ma QY (2005) Effect of resveratrol on microcirculation disorder and lung injury following severe acute pancreatitis in rats. World J Gastroenterol 11:433–435

    PubMed  CAS  Google Scholar 

  39. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    Article  PubMed  CAS  Google Scholar 

  40. Kuklinski B (1992) Acute pancreatitis—a “Free radical disease”. Decreasing mortality by sodium selenite (Na2SeO3) therapy. Z Gesamte Inn Med 47(4):165–167

    PubMed  CAS  Google Scholar 

  41. Kuklinski B, Buchner M, Müler T, Schweder R (1992) Anti-oxidative therapy of pancreatitis-an 18-month interim evaluation. Z Gesamte Inn Med 47(6):239–245

    PubMed  CAS  Google Scholar 

  42. Kirk GR, White JS, McKie L, Stevenson M, Young I, Clements WD, Rowlands BJ (2006) Combined antioxidant therapy reduces pain and improves quality of life in chronic pancreatitis. J Gastrointest Surg 10(4):499–503

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. Dr. Tuncay Altug and the staff at the Animal Production Experimental Centre, Cerrahpasa Medical Faculty, Istanbul University for taking care of the animals. The authors also thank Prof. Dr. Ilhan Onaran for the help in the revision of the manuscript. This study was partly presented at the National Surgery Congress, pp 138–139, Antalya Turkey, 24–28 May 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Riza Kiziler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiziler, A.R., Aydemir, B., Gulyasar, T. et al. Relationships among Iron, Protein Oxidation and Lipid Peroxidation Levels in Rats with Alcohol-induced Acute Pancreatitis. Biol Trace Elem Res 124, 135–143 (2008). https://doi.org/10.1007/s12011-008-8127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-008-8127-6

Keywords

Navigation