Skip to main content

Advertisement

Log in

Effect of Novel Pretreatment of Steam Explosion Associated with Ammonium Sulfite Process on Enzymatic Hydrolysis of Corn Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Effective pretreatment process to improve enzymatic saccharification and decrease inhibitors generation is a key operation involved in the lignocellulosic bioconversion. The pretreatment of steam explosion associated with ammonium sulfite (SEAS) process was carried out to investigate the effect on enzymatic hydrolysis and fermentation production as a combinatorial pretreatment. Results showed that after pretreatment (1.0 MPa, 30 min, 20%w/w ammonium sulfite added), the phenolic inhibitors derived from lignin significantly removed (37.8%), which transformed to chemical humic acid (humic acid and fulvic acid) mostly. Sugar conversion (glucan (77.8%) and xylan (73.3%)) and ethanol concentration (40.8 g/L) of combinatorial pretreated samples were increased by 24.7% and 33.8%, respectively, compared with steam explosion (SE) pretreated samples. FT-IR and elemental analysis results indicated that the lignin structure changed and aromatization degree increased after SEAS pretreatment. In addition, the ratio of C/N decreased and compost maturity degree increased with the holding time. The effect on the growth of wheat seedlings of soluble fulvic acid solution from combinatorial pretreatment was investigated, where below 1% (w/w) concentration did contribute to growth. Therefore, one-step chemical pretreatment process could be provided for inhibitors removal, enzymatic saccharification increase, and chemical humic acid formation as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.

    Article  CAS  PubMed  Google Scholar 

  2. Arevalo-Gallegos, A., Ahmad, Z., Asgher, M., Parra-Saldivar, R., & Iqbal, H. M. (2017). Lignocellulose: a sustainable material to produce value-added products with a zero waste approach—a review. International Journal of Biological Macromolecules, 99, 308–318.

    Article  CAS  PubMed  Google Scholar 

  3. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H. L., & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology, 160, 196–206.

    Article  CAS  Google Scholar 

  4. Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technology, 199, 76–82.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, H. Z. (2015). Gas explosion technology and biomass refinery. Netherlands: Springer.

    Book  Google Scholar 

  6. de Souza Moretti, M. M., Perrone, O. M., Nunes, C. D. C. C., Taboga, S., Boscolo, M., da Silva, R., & Gomes, E. (2016). Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw. Bioresource Technology, 219(219), 773–777.

    Article  CAS  Google Scholar 

  7. Chen, H. (2015). Lignocellulose biorefinery engineering: principles and applications (No. 74). Woodhead Publishing.

  8. Chen, H., & Wang, L. (2016). Technologies for biochemical conversion of biomass. Academic Press.

  9. Grous, W. R., Converse, A. O., & Grethlein, H. E. (1986). Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology, 8(5), 274–280.

    Article  CAS  Google Scholar 

  10. Brownell, H. H., Yu, E. K. C., & Saddler, J. N. (1986). Steam-explosion pretreatment of wood: effect of chip size, acid, moisture content and pressure drop. Biotechnology and Bioengineering, 28(6), 792–801.

    Article  CAS  PubMed  Google Scholar 

  11. Hull, W., Smith, B., Hull, J., & Holzer, W. (1954). Staff-industry collaborative report ammonia base sulfite pulping. Industrial and Engineering Chemistry, 46(8), 1546–1557.

    Article  CAS  Google Scholar 

  12. Qiu, W., & Chen, H. Z. (2012). Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresource Technology, 118(4), 8–12.

    Article  CAS  PubMed  Google Scholar 

  13. Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33.

    Article  CAS  Google Scholar 

  14. Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6(1), 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Han, X., Liu, G., Song, W., Qin, Y., & Qu, Y. (2017). Continuous feeding of spent ammonium sulphite liquor improves the production and saccharification performance of cellulase by Penicillium oxalicum. Bioresource Technology, 245, 984–992.

    Article  CAS  PubMed  Google Scholar 

  16. Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 102(2), 1254–1263.

    Article  CAS  PubMed  Google Scholar 

  17. Cavka, A., Alriksson, B., Ahnlund, M., & Jönsson, L. J. (2011). Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnology and Bioengineering, 108(11), 2592–2599.

    Article  CAS  PubMed  Google Scholar 

  18. Cavka, A., & Jönsson, L. J. (2013). Detoxification of lignocellulosic hydrolysates using sodium borohydride. Bioresource Technology, 136, 368–376.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, H., Bai, Y., Zhou, W., & Chen, F. (2017). Color reduction of sulfonated eucalyptus kraft lignin. International Journal of Biological Macromolecules, 97, 201–208.

    Article  CAS  PubMed  Google Scholar 

  20. Qi, G., Xiong, L., Tian, L., Luo, M., Chen, X., Huang, C., Li, H. L., & Chen, X. (2018). Ammonium sulfite pretreatment of wheat straw for efficient enzymatic saccharification. Sustainable Energy Technologies and Assessments, 29, 12–18.

    Article  Google Scholar 

  21. Wu, H., Lai, C., Zeng, G., Liang, J., Chen, J., Xu, J., Dai, J. J., Li, X. D., Liu, J. F., Chen, M., Lu, L. H., Hu, L., & Wan, J. (2017). The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Critical Reviews in Biotechnology, 37(6), 754–764.

    Article  CAS  PubMed  Google Scholar 

  22. de Melo, B. A. G., Motta, F. L., & Santana, M. H. A. (2016). Humic acids: structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering: C, 62, 967–974.

    Article  CAS  Google Scholar 

  23. Haider, K., & Martin, J. P. (1967). Synthesis and transformation of phenolic compounds by Epicoccum nigrum in relation to humic acid formation 1. Soil Science Society of America Journal, 31(6), 766–772.

    Article  CAS  Google Scholar 

  24. Lipczynska-Kochany, E. (2018). Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review. Chemosphere, 202, 420–437.

    Article  CAS  PubMed  Google Scholar 

  25. Qiu, W., Zhang, W., & Chen, H. (2014). Natural laccase mediators separated from water-washed solution of steam exploded corn straw by nanofiltration and organic solvent fractionation. Bioresource Technology, 156, 368–371.

    Article  CAS  PubMed  Google Scholar 

  26. Kuwatsuka, S., Watanabe, A., Itoh, K., & Arai, S. (1992). Comparison of two methods of preparation of humic and fulvic acids, IHSS method and NAGOYA method. Soil Science and Plant Nutrition, 38(1), 23–30.

    Article  CAS  Google Scholar 

  27. Huang, C., Ragauskas, A. J., Wu, X., Huang, Y., Zhou, X., He, J., Huang, C. X., Lai, C. H., Li, X., & Yong, Q. (2018). Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Bioresource Technology, 250, 365–373.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, G. S., Pan, X. J., Zhu, J. Y., Gleisner, R., & Rockwood, D. (2009). Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnology Progress, 25(4), 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  29. Roopan, S. M. (2017). An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. International Journal of Biological Macromolecules, 103, 508–514.

    Article  CAS  PubMed  Google Scholar 

  30. Faix, O., Meier, D., & Beinhoff, O. (1989). Analysis of lignocelluloses and lignins from Arundo donax L. and Miscanthus sinensis Anderss., and hydroliquefaction of Miscanthus. Biomass, 18(2), 109–126.

    Article  CAS  Google Scholar 

  31. Seca, A. M., Cavaleiro, J. A., Domingues, F. M., Silvestre, A. J., Evtuguin, D., & Neto, C. P. (2000). Structural characterization of the lignin from the nodes and internodes of Arundo donax reed. Journal of Agricultural and Food Chemistry, 48(3), 817–824.

    Article  CAS  PubMed  Google Scholar 

  32. Hu, J., Wu, S., Jiang, X., & Xiao, R. (2018). Structure-reactivity relationship in fast pyrolysis of lignin into monomeric phenolic compounds. Energy & Fuels, 32(2), 1843–1850.

    Article  CAS  Google Scholar 

  33. Shinde, S. D., Meng, X., Kumar, R., & Ragauskas, A. J. (2018). Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chemistry, 20(10), 2192–2205.

    Article  CAS  Google Scholar 

  34. Liu, H., Pang, B., Wang, H., Li, H., Lu, J., & Niu, M. (2015). Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover. Journal of Agricultural and Food Chemistry, 63(12), 3229–3234.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, H., Li, G., & Li, H. (2014). Novel pretreatment of steam explosion associated with ammonium chloride preimpregnation. Bioresource Technology, 153, 154–159.

    Article  CAS  PubMed  Google Scholar 

  36. Hu, F., Jung, S., & Ragauskas, A. (2012). Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, 117, 7–12.

    Article  CAS  PubMed  Google Scholar 

  37. van der Hage, E. R., Mulder, M. M., & Boon, J. J. (1993). Structural characterization of lignin polymers by temperature-resolved in-source pyrolysis-mass spectrometry and Curie-point pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 25, 149–183.

    Article  Google Scholar 

  38. Pereira, J. H., Heins, R. A., Gall, D. L., McAndrew, R. P., Deng, K., Holland, K. C., Donohue, T. J., Noguera, D. R., Simmons, B. A., Sale, K. L., Ralph, J. R., & Adams, P. D. (2016). Structural and biochemical characterization of the early and late enzymes in the lignin β-aryl ether cleavage pathway from Sphingobium sp SYK-6. Journal of Biological Chemistry, jbc-M115, 291(19), 10228–10238.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao, X., Li, S., Wu, R., & Liu, D. (2017). Organosolv fractionating pre-treatment of lignocellulosic biomass for efficient enzymatic saccharification: chemistry, kinetics, and substrate structures. Biofuels, Bioproducts and Biorefining, 11(3), 567–590.

    Article  CAS  Google Scholar 

  40. Aro, T., & Fatehi, P. (2017). Production and application of lignosulfonates and sulfonated lignin. ChemSusChem, 10(9), 1861–1877.

    Article  CAS  PubMed  Google Scholar 

  41. Xie, S., Sun, Q., Pu, Y., Lin, F., Sun, S., Wang, X., Ragauskas, A. J., & Yuan, J. S. (2017). Advanced chemical design for efficient lignin bioconversion. ACS Sustainable Chemistry & Engineering, 5(3), 2215–2223.

    Article  CAS  Google Scholar 

  42. Wang, X., Selvam, A., & Wong, J. W. (2016). Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresource Technology, 217, 227–232.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, S., Shen, Z., Yang, C., Zhou, Y., Li, X., Zeng, G., Ai, S. J., & He, H. (2017). Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting. International Biodeterioration & Biodegradation, 119, 429–436.

    Article  CAS  Google Scholar 

  44. Yang, F., Li, G., Shi, H., & Wang, Y. (2015). Effects of phosphogypsum and superphosphate on compost maturity and gaseous emissions during kitchen waste composting. Waste Management, 36, 70–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Transformational Technologies for Clean Energy and Demonstration (Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDA 21060300), the National Key Research and Development Program of China (Grant No. 2018YFB1501702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Wang.

Ethics declarations

This manuscript complies with the Ethical Rules applicable for this journal.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Wang, L. & Chen, H. Effect of Novel Pretreatment of Steam Explosion Associated with Ammonium Sulfite Process on Enzymatic Hydrolysis of Corn Straw. Appl Biochem Biotechnol 189, 485–497 (2019). https://doi.org/10.1007/s12010-019-03018-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03018-w

Keywords

Navigation