Skip to main content
Log in

Utilization of a Silicone Rubber Membrane for Passive Oxygen Supply in a Microbial Fuel Cell Treating Carbon and Nitrogen from Synthetic Coke-Oven Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study firstly introduced a silicone rubber membrane (SRM) into microbial fuel cell (MFC) for passive oxygen supply to simultaneously remove phenol and nitrogen from synthetic coke-oven wastewater diluted with seawater. Passive oxygen transport with biofilm on the membrane was improved by ~ 18-fold in comparison with the one without a biofilm. In addition, although the oxygen supply was passive, nitrification accounted for 34% of those aeration conditions. It was also found that silicone rubber membrane can control NO2–N and/or NO3–N production. A dual-chamber MFC treating the synthetic coke-oven wastewater achieved a maximum power density of 54 mW m−2 with a coulombic efficiency of 2.7%. We conclude that silicone rubber membrane is effective for sustainable coke-oven wastewater treatment in MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang, E.-E., Hsing, H.-J., Chiang, P.-C., Chen, M.-Y., & Shyng, J.-Y. (2008). The chemical and biological characteristics of coke-oven wastewater by ozonation. Journal of Hazardous Materials, 156(1–3), 560–567.

    Article  CAS  PubMed  Google Scholar 

  2. Lim, B.-R., Hu, H.-Y., & Fujie, K. (2003). Biological degradation and chemical oxidation characteristics of coke-oven wastewater. Water, Air, and Soil Pollution, 146(1–4), 23–33.

    Article  CAS  Google Scholar 

  3. Quan, X., Wang, F., Zhao, Q., Zhao, T., & Xiang, J. (2009). Air stripping of ammonia in a water-sparged aerocyclone reactor. Journal of Hazardous Materials, 170(2–3), 983–988.

    Article  CAS  PubMed  Google Scholar 

  4. Lim, B.-R., Hu, H.-Y., Huang, X., & Fujie, K. (2002). Effect of seawater on treatment performance and microbial population in a biofilter treating coke-oven wastewater. Process Biochemistry, 37(9), 943–948.

    Article  CAS  Google Scholar 

  5. Shaw, K. (1993). Biological treatment of full-strength coke plant wastewater at Geneva steel. Iron and Steel Engineer , 70(8), 29–32.

  6. Li, Y., Gu, G., Zhao, J., Yu, H., Qiu, Y., & Peng, Y. (2003). Treatment of coke-plant wastewater by biofilm systems for removal of organic compounds and nitrogen. Chemosphere, 52(6), 997–1005.

    Article  CAS  PubMed  Google Scholar 

  7. Larsen, T. A., & Gujer, W. (1997). The concept of sustainable urban water management. Water Science and Technology, 35(9), 3–10.

    Article  CAS  Google Scholar 

  8. Logan, B. E. (2008). Microbial fuel cells. John Wiley & Sons, Inc., NJ

  9. Du, Z., Li, H., & Gu, T. (2007). A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances, 25(5), 464–482.

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706–723.

    Article  CAS  Google Scholar 

  11. Luo, H., Liu, G., Zhang, R., & Jin, S. (2009). Phenol degradation in microbial fuel cells. Chemical Engineering Journal, 147(2–3), 259–264.

    Article  CAS  Google Scholar 

  12. Friman, H., Schechter, A., Nitzan, Y., & Cahan, R. (2013). Phenol degradation in bio-electrochemical cells. International Biodeterioration & Biodegradation, 84, 155–160.

    Article  CAS  Google Scholar 

  13. Buitrón, G., & Moreno-Andrade, I. (2014). Performance of a single-chamber microbial fuel cell degrading phenol: effect of phenol concentration and external resistance. Applied Biochemistry and Biotechnology, 174(7), 2471–2481.

    Article  CAS  PubMed  Google Scholar 

  14. Virdis, B., Rabaey, K., Yuan, Z., & Keller, J. (2008). Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 42(12), 3013–3024.

    Article  CAS  PubMed  Google Scholar 

  15. Virdis, B., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44(9), 2970–2980.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, X., Zhu, F., Chen, L., Zhao, Q., & Tao, G. (2013). Removal of ammonia nitrogen from wastewater using an aerobic cathode microbial fuel cell. Bioresource Technology, 146, 161–168.

    Article  CAS  PubMed  Google Scholar 

  17. Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying–denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916.

    Article  CAS  Google Scholar 

  18. Zhang, G., Zhang, H., Ma, Y., Yuan, G., Yang, F., & Zhang, R. (2014). Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation. Enzyme and Microbial Technology, 60, 56–63.

    Article  CAS  PubMed  Google Scholar 

  19. Yan, H., Saito, T., & Regan, J. M. (2012). Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode. Water Research, 46(7), 2215–2224.

    Article  CAS  PubMed  Google Scholar 

  20. Bronzino, J. D. (1999). The biomedical engineering handbook, Two Volume Set, 2nd ed., CRC Press:Boca Raton, FL.

  21. Gong, Z., Yang, F., Liu, S., Bao, H., Hu, S., & Furukawa, K. (2007). Feasibility of a membrane-aerated biofilm reactor to achieve single-stage autotrophic nitrogen removal based on Anammox. Chemosphere, 69(5), 776–784.

    Article  CAS  PubMed  Google Scholar 

  22. Terada, A., Yamamoto, T., Igarashi, R., Tsuneda, S., & Hirata, A. (2006). Feasibility of a membrane-aerated biofilm reactor to achieve controllable nitrification. Biochemical Engineering Journal, 28(2), 123–130.

    Article  CAS  Google Scholar 

  23. Hu, S., Yang, F., Liu, S., & Yu, L. (2009). The development of a novel hybrid aerating membrane-anaerobic baffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater. Water Research, 43(2), 381–388.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, C.-P., Liang, Z., Das, A., & Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 45(3), 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  25. Semmens, M. J., Dahm, K., Shanahan, J., & Christianson, A. (2003). COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research, 37(18), 4343–4350.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y., Li, X., Yang, X., & He, Z. (2017). Enhanced nitrogen removal by membrane-aerated nitritation-anammox in a bioelectrochemical system. Bioresource Technology, 238, 22–29.

    Article  CAS  PubMed  Google Scholar 

  27. Smolders, G., Van der Meij, J., Van Loosdrecht, M., & Heijnen, J. (1994). Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnology and Bioengineering, 43(6), 461–470.

    Article  CAS  PubMed  Google Scholar 

  28. Sueoka, K., Satoh, H., Onuki, M., & Mino, T. (2009). Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiology Letters, 291(2), 169–174.

    Article  CAS  PubMed  Google Scholar 

  29. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington DC: American Public Health Association.

    Google Scholar 

  30. Watanabe, K. (2008). Recent developments in microbial fuel cell technologies for sustainable bioenergy. Journal of Bioscience and Bioengineering, 106(6), 528–536.

    Article  CAS  PubMed  Google Scholar 

  31. Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  32. Puig, S., Coma, M., Desloover, J., Boon, N., Colprim, J. S., & Balaguer, M. D. (2012). Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environmental Science & Technology, 46(4), 2309–2315.

    Article  CAS  Google Scholar 

  33. Feng, C., Huang, L., Yu, H., Yi, X., & Wei, C. (2015). Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. Water Research, 76, 160–170.

    Article  CAS  PubMed  Google Scholar 

  34. Henze, M., Gujer, W., Mino, T., & Van Loosdrecht, M. C. M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9. IWA publishing, London.

  35. Kuntke, P., Śmiech, K., Bruning, H., Zeeman, G., Saakes, M., Sleutels, T., Hamelers, H., & Buisman, C. (2012). Ammonium recovery and energy production from urine by a microbial fuel cell. Water Research, 46(8), 2627–2636.

    Article  CAS  PubMed  Google Scholar 

  36. Suzuki, Y., Miyahara, S., & Takeishi, K. (1990). Research on wastewater treatment method using gas permeable film. Proceedings of Environmental and Sanitary Engineering Research, 27, 65–74 (in Japanese).

    Google Scholar 

  37. Okabe, S., Naitoh, H., & Watanabe, Y. (1999). Spatial distributions of ammonia-oxidizing bacteria in wastewater biofilms analyzed by fluorescent in situ hybridization. Journal of Japan Society on Water Environment, 22(3), 191–198 (in Japanese).

    Article  Google Scholar 

  38. Lefebvre, O., & Moletta, R. (2006). Treatment of organic pollution in industrial saline wastewater: a literature review. Water Research, 40(20), 3671–3682.

    Article  CAS  PubMed  Google Scholar 

  39. Kugelman, I. J., & McCarty, P. L. (1965). Cation toxicity and stimulation in anaerobic waste treatment. J.Water Pollut. Control Fed., 37, 97–116.

  40. Lefebvre, O., Tan, Z., Kharkwal, S., & Ng, H. Y. (2012). Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresource Technology, 112, 336–340.

    Article  CAS  PubMed  Google Scholar 

  41. Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.

    Article  CAS  Google Scholar 

  42. Liu, H., Cheng, S., & Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 39(2), 658–662.

    Article  CAS  Google Scholar 

  43. Song, T.-s., Wu, X.-y., & Zhou, C. C. (2014). Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess and Biosystems Engineering, 37(2), 133–138.

    Article  CAS  PubMed  Google Scholar 

  44. Ter Heijne, A., Hamelers, H. V., De Wilde, V., Rozendal, R. A., & Buisman, C. J. (2006). A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environmental Science & Technology, 40(17), 5200–5205.

    Article  CAS  Google Scholar 

  45. Li, X. M., Cheng, K. Y., & Wong, J. W. (2013). Bioelectricity production from food waste leachate using microbial fuel cells: effect of NaCl and pH. Bioresource Technology, 149, 452–458.

    Article  CAS  PubMed  Google Scholar 

  46. Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39(14), 5488–5493.

    Article  CAS  Google Scholar 

  47. Henze, M., van Loosdrecht, M. C., Ekama, G. A., & Brdjanovic, D. (2008). Biological wastewatertreatment: principles, modelling and design. IWA publishing, London.

Download references

Acknowledgments

This research was supported by the Steel Foundation for Environmental Protection Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyu Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 735 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Matsubara, H., Nittami, T. et al. Utilization of a Silicone Rubber Membrane for Passive Oxygen Supply in a Microbial Fuel Cell Treating Carbon and Nitrogen from Synthetic Coke-Oven Wastewater. Appl Biochem Biotechnol 189, 217–232 (2019). https://doi.org/10.1007/s12010-019-02994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-02994-3

Keywords

Navigation