Skip to main content
Log in

Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yamada, Y., & Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 15–24.

    Article  CAS  PubMed  Google Scholar 

  2. Sengun, I. Y., & Karabiyikli, S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 22(5), 647–656.

    Article  CAS  Google Scholar 

  3. Qi, Z. L., Yang, H. L., Xia, X. L., Wang, W., & Yu, X. B. (2014). High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain. Biotechnol. Bioproc. E., 19(2), 289–297.

    Article  CAS  Google Scholar 

  4. Zheng, Y., Zhang, K. P., Su, G. Y., Han, Q., Shen, Y. B., & Wang, M. (2015). The evolutionary response of alcohol dehydrogenase and aldehyde dehydrogenases of Acetobacter pasteurianus CGMCC 3089 to ethanol adaptation. Food Science and Biotechnology, 24(1), 133–140.

    Article  CAS  Google Scholar 

  5. Zhu, X. M., Xia, X. L., Yang, H. L., & Wang, W. (2013). Study on the key enzymes of ethanol oxidation and acetic acid production in Acetobacter pasteurianus HN 1.01. Sci. Technol. Food Ind, 34(2), 167–170.

    CAS  Google Scholar 

  6. Wang, B., Shao, Y. C., Tao, C., Chen, W. P., & Chen, F. S. (2015). Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci. Rep-uk., 5, 18330.

    Article  CAS  Google Scholar 

  7. Xia, K., Li, Y. D., Sun, J., & Liang, X. L. (2016). Comparative genomics of Acetobacter pasteurianus Ab3, an acetic acid producing strain isolated from Chinese traditional rice vinegar meiguichu. PLoS One, 11(9), e0162172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanchanarach, W., Theeragool, G., Yakushi, T., Toyama, H., Adachi, O., & Matsushita, K. (2010). Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl. Microbiol. Biot., 85(3), 741–751.

    Article  CAS  Google Scholar 

  9. Chen, Y., Bai, Y., Li, S. D., Wang, C., Xu, N., & Hu, Y. (2016). Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biot, 32(1), 14.

    Article  CAS  Google Scholar 

  10. Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lotong, N., & Adachi, O. (1997). Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Bioscience Biotechnology and Biochemistry, 61(1), 138–145.

    Article  CAS  Google Scholar 

  11. Moonmangmee, D., Adachi, O., Ano, Y., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., & Matsusltita, K. (2000). Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Bioscience Biotechnology and Biochemistry, 64(11), 2306–2315.

    Article  CAS  Google Scholar 

  12. Soemphol, W., Deeraksa, A., Matsutani, M., Yakushi, T., Toyama, H., Adachi, O., Yamada, M., & Matasusttita, K. (2011). Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU 1100. Bioscience Biotechnology and Biochemistry, 75(10), 1921–1928.

    Article  CAS  Google Scholar 

  13. Lee, K. W., Shim, J. M., Kim, G. M., Shin, J. H., & Kim, J. H. (2015). Isolation and characterization of Acetobacter species from a traditionally prepared vinegar. Microbiol. Biotechnol. Lett., 43(3), 219–226.

    Article  Google Scholar 

  14. Chinnawirotpisan, P., Theeragool, G., Limtong, S., Toyama, H., Adachi, O. O., & Matsushita, K. (2003). Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU 1108. Journal of Bioscience and Bioengineering, 96(6), 564–571.

    Article  CAS  PubMed  Google Scholar 

  15. Andrés-Barrao, C., Saad, M. M., Chappuis, M. L., Boffa, M., Perret, X., Pérez, R. O., & Barja, F. (2012). Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. Journal of Proteomics, 75(6), 1701–1717.

    Article  CAS  PubMed  Google Scholar 

  16. Trcek, J., Toyama, H., Czuba, J., Misiewicz, A., & Matsushita, K. (2006). Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl. Microbiol. Biot., 70(3), 366–373.

    Article  CAS  Google Scholar 

  17. Quintero, Y., Poblet, M., Guillamón, J. M., & Mas, A. (2009). Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. Journal of Applied Microbiology, 106(2), 666–674.

    Article  CAS  PubMed  Google Scholar 

  18. Hong, S. H., Moon, S. Y., & Lee, S. Y. (2003). Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. Journal of Microbiology and Biotechnology, 13(4), 571–577.

    CAS  Google Scholar 

  19. Nakano, S., & Fukaya, M. (2008). Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 54–59.

    Article  CAS  PubMed  Google Scholar 

  20. Illeghems, K., De, V. L., & Weckx, S. (2013). Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics, 14(1), 526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adler, P., Frey, L. J., Berger, A., Bolten, C. J., Hansen, C. E., & Wittmann, C. (2014). The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Appl. Environ. Microb., 80(15), 4702–4716.

    Article  CAS  Google Scholar 

  22. Schilling, C. H., Edwards, J. S., Letscher, D., & Palsson, B. Ø. (2000). Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and Bioengineering, 71(4), 286–306.

    Article  CAS  PubMed  Google Scholar 

  23. Dandekar, T., Fieselmann, A., Majeed, S., & Ahmed, Z. (2014). Software applications toward quantitative metabolic flux analysis and modeling. Briefings in Bioinformatics, 15(1), 91–107.

    Article  PubMed  Google Scholar 

  24. Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metabolic Engineering, 1(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  25. Di, H., Jia, X., Wen, J., Wang, G., Yu, G., Caiyin, Q., & Chen, Y. L. (2011). Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 165(7–8), 1725–1739.

    Google Scholar 

  26. Wu, X. F., Liu, Q., Deng, Y. D., Li, J. H., Chen, X. J., Gu, Y. Z., Lv, X. J., Zheng, Z., Jiang, S. T., & Li, X. J. (2017). Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC 40205 mutant. Bioresource Technology, 241, 25–34.

    Article  CAS  PubMed  Google Scholar 

  27. Saeki, A., Matsushita, K., Takeno, S., Taniguchi, M., Toyama, H., Theeragool, G., Lotong, N., & Adachi, O. (1999). Enzymes responsible for acetate oxidation by acetic acid bacteria. Bioscience Biotechnology and Biochemistry, 63(12), 2102–2109.

    Article  CAS  Google Scholar 

  28. Fregapane, G., Rubiofernandez, H., & Desamparados, S. M. (2001). Influence of fermentation temperature on semi-continuous acetification for wine vinegar production. European Food Research and Technology, 213(1), 62–66.

    Article  CAS  Google Scholar 

  29. Qi, Z. L., Wang, W., Yang, H. L., Xia, X. L., & Yu, X. B. (2014). Mutation of Acetobacter pasteurianus by UV irradiation under acidic stress for high-acidity vinegar fermentation. International Journal of Food Science and Technology, 49(2), 468–476.

    Article  CAS  Google Scholar 

  30. Krusong, W., Kerdpiboon, S., Jindaprasert, A., Yaiyen, S., Pornpukdeewatana, S., & Tantratian, S. (2015). Influence of calcium chloride in the high temperature acetification by strain Acetobacter aceti WK for vinegar. Journal of Applied Microbiology, 119(5), 1291–1300.

    Article  CAS  PubMed  Google Scholar 

  31. Huzar, E., & Wodnicka, A. (2013). Determination of ethanol content in medicated syrups by static headspace gas chromatography. Acta Poloniae Pharmaceutica, 70(1), 41–49.

    CAS  PubMed  Google Scholar 

  32. Matsushita, K., Kobayashi, Y., Mizuguchi, M., Toyama, H., Adachi, O., Sakamoto, K., & Miyoshi, H. (2008). A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans. Bioscience Biotechnology and Biochemistry, 72(10), 2723–2731.

    Article  CAS  Google Scholar 

  33. Wood, W. A., Fetting, R. A., & Hertlein, B. C. (1962). Gluconic dehydrogenase from pseudomonas fluorescens. Method. Enzymol., 5, 287–291.

    Article  CAS  Google Scholar 

  34. Dulley, J. R., & Grieve, P. A. (1975). A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Analytical Biochemistry, 64(1), 136–141.

    Article  CAS  PubMed  Google Scholar 

  35. Vialle, J., Kolosky, M., & Rocca, J. L. (1981). Determination of betaine in sugar and wine by liquid chromatography. Journal of Chromatography. A, 204(204), 429–435.

    Article  CAS  Google Scholar 

  36. Shah, M. M., & Cheryan, M. (1995). Improvement of productivity in acetic acid fermentation with clostridium thermoaceticum. Applied Biochemistry and Biotechnology, 51(1), 413–422.

    Article  Google Scholar 

  37. Sanarico, D., Motta, S., Bertolini, L., & Antonelli, A. (2003). HPLC determination of organic acids in traditional balsamic vinegar of Reggio Emilia. J. Liq. Chromatogr. R. T., 26(13), 2177–2187.

    Article  CAS  Google Scholar 

  38. Li, X. J., Liu, Y., Yang, Y., Zhang, H., Wang, H. L., Wu, Y., Zhang, M., Sun, T., Cheng, J. S., Wu, X. F., Pan, L. J., Jiang, S. T., & Wu, H. W. (2014). High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol. Bioproc. E., 19(3), 478–492.

    Article  CAS  Google Scholar 

  39. Ehrenreich, A., & Liebl, W. (2017). The genomes of acetic acid bacteria. In A. Ehrenreich, & W. Liebl (eds.), Biology of microorganisms on grapes, in must and in wine. Berlin: Springer Berlin Heidelberg, pp. 469–494.

  40. Wallenius, J., Maaheimo, H., & Eerikäinen, T. (2016). Carbon 13-metabolic flux analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions. Bioresource Technology, 219, 378–386.

    Article  CAS  PubMed  Google Scholar 

  41. Varma, A., & Palsson, B. O. (1994). Metabolic flux balancing: basic concepts, scientific and practical use. Nature Biotechnology, 12(10), 994–998.

    Article  CAS  Google Scholar 

  42. Li, X. J., Zheng, Z., Wei, Z. J., Jiang, S. T., Pan, L. J., & Weng, S. B. (2009). Screening, breeding and metabolic modulating of a strain producing succinic acid with corn straw hydrolyte. World J. Microbiol. Biot., 25(4), 667–677.

    Article  CAS  Google Scholar 

  43. Dandekar, T., Fieselmann, A., Majeed, S., & Ahmed, Z. (2014). Software applications toward quantitative metabolic flux analysis and modeling. Briefings in Bioinformatics, 15(1), 91–107.

    Article  PubMed  Google Scholar 

  44. Saeki, A., Matsushita, K. T. H., Theeragool, G., Lotong, N. A. O., & Taniguchi, M. (1997). Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Bioscience Biotechnology and Biochemistry, 61(2), 317–323.

    Article  CAS  Google Scholar 

  45. Longacre, A., Reimers, J. M., Gannon, J. E., & Wright, B. E. (1997). Flux analysis of glucose metabolism in rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genetics and Biology, 21(1), 30–39.

    Article  CAS  PubMed  Google Scholar 

  46. McKinlay, J. B., Shachar-Hill, Y., Zeikus, J. G., & Vieille, C. (2007). Determining Actinobacillus succino genes metabolic pathways and fluxes by NMR and GC-MS analysis of 13C-labeled metabolic product isotopomers. Metabolic Engineering, 9(2), 177–192.

    Article  CAS  PubMed  Google Scholar 

  47. Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. J. Ind. Microbiol. Biot., 42(3), 317–325.

    Article  CAS  Google Scholar 

  48. Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., & Nielsen, J. (2015). Microbial acetyl-CoA metabolism and metabolic engineering. Metabolic Engineering, 28, 28–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (31601465), Project of Hefei University of Technology (JZ2017YYPY0247/JZ2016YYPY0041), and Anhui Science and Technology Project (15CZZ03100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjiang Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Yao, H., Liu, Q. et al. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis. Appl Biochem Biotechnol 186, 217–232 (2018). https://doi.org/10.1007/s12010-018-2732-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2732-4

Keywords

Navigation