Skip to main content

Advertisement

Log in

Feasibility of Growing Chlorella sorokiniana on Cooking Cocoon Wastewater for Biomass Production and Nutrient Removal

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The feasibility of microalgae cultivation using cooking cocoon wastewater (CCW) collected from a silk production factory was investigated in this work. Results showed that Chlorella sorokiniana grew well on the CCW whether it was autoclaved or not. After 7-day cultivation, the biomass increased by 1.57, 2.78, 3.33, and 3.14 times, and by 3.65, 4.03, 3.27, and 2.82 times when this alga was cultivated in the raw CCW (R-CCW) and autoclaved CCW (A-CCW) at the initial dry cell densities of 0.01, 0.04, 0.08, and 0.16 g/L, respectively. The algal photosynthetic growth was not affected when this alga grew on the R-CCW at an initial dry cell density of ≥ 0.04 g/L, while it was significantly inhibited when the initial dry cell density was 0.01 g/L. Additionally, this alga could remove nutrients rapidly from the CCW, and the removal efficiency increased with the increase of initial dry cell density. Thus, it was concluded that the CCW could be used as a good-quality medium for the algal growth, which is worthy of further study and promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 82, 3107–3126.

    Article  CAS  Google Scholar 

  2. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: a rich source for food and medicine. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2017.11.003.

  3. Rastogi, R. P., Pandey, A., Larroche, C., & Madamwar, D. (2017). Algal green energy – R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 82, 2946–2969.

    Article  CAS  Google Scholar 

  4. Pleissner, D., & Rumpold, B. A. (2018). Utilization of organic residues using heterotrophic microalgae and insects. Waste Management, 72, 227–239.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, W., Chen, P., Min, M., Ma, X., Wang, J., Griffith, R., Hussain, F., Peng, P., Xie, Q., Li, Y., Shi, J., Meng, J., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable and Sustainable Energy Reviews, 36, 256–269.

    Article  Google Scholar 

  7. Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203(Pt 1), 299–315.

    Article  CAS  PubMed  Google Scholar 

  8. He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.

    Article  CAS  PubMed  Google Scholar 

  9. Mujtaba, G., & Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 120, 174–184.

    Article  CAS  PubMed  Google Scholar 

  10. Udaiyappan, A. F. M., Hasan, H. A., Takriff, M. S., & Abdullah, S. R. S. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8–21.

    Article  Google Scholar 

  11. Chung, Y. S., Lee, J. W., & Chung, C. H. (2017). Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renewable and Sustainable Energy Reviews, 74, 139–144.

    Article  CAS  Google Scholar 

  12. Quijano, G., Arcila, J. S., & Buitrón, G. (2017). Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnology Advances, 35(6), 772–781.

    Article  CAS  PubMed  Google Scholar 

  13. Capar, G., Aygun, S. S., & Gecit, M. R. (2008). Treatment of silk production wastewaters by membrane processes for sericin recovery. Journal of Membrane Science, 325(2), 920–931.

    Article  CAS  Google Scholar 

  14. Wu, J. H., Wang, Z., & Xu, S. Y. (2007). Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 103(4), 1255–1262.

    Article  CAS  Google Scholar 

  15. Zhang, Y. Q. (2002). Applications of natural silk protein sericin in biomaterials. Biotechnology Advances, 20(2), 91–100.

    Article  CAS  PubMed  Google Scholar 

  16. Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.

    Article  CAS  PubMed  Google Scholar 

  17. Miazek, K., & Ledakowicz, S. (2013). Chlorophyll extraction from leaves, needles and microalgae: a kinetic approach. International Journal of Agricultural and Biological Engineering, 6, 107–115.

    CAS  Google Scholar 

  18. Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417–425.

    Article  CAS  PubMed  Google Scholar 

  19. Deng, X. Y., Li, D., Wang, L., Hu, X. L., Cheng, J., & Gao, K. (2017). Potential toxicity of ionic liquid ([C12mim]BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 586, 675–684.

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Amotz, A., Tornabene, T. G., & Thomas, W. H. (1985). Chemical profile of selected species of microalgae with emphasis on lipids. Journal of Phycology, 21, 72–81.

    Article  CAS  Google Scholar 

  21. Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.

    Article  CAS  Google Scholar 

  22. Hena, S., Znad, H., Heong, K. T., & Judd, S. (2017). Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 128, 267–277.

    Article  CAS  PubMed  Google Scholar 

  23. Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649–8657.

    Article  CAS  PubMed  Google Scholar 

  24. Mujtaba, G., Rizwan, M., Kim, G., & Lee, K. (2018). Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343, 155–162.

    Article  CAS  Google Scholar 

  25. Wang, Y., Ho, S. H., Cheng, C. L., Nagarajan, D., Guo, W. Q., Lin, C., Li, S., Ren, N., & Chang, J. S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14.

    Article  CAS  PubMed  Google Scholar 

  26. Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244(Pt 2), 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  27. Alyabyev, A. J., Loseva, N. L., Gordon, L. K., Andreyeva, I. N., Rachimova, G. G., Tribunskih, V. I., Ponomareva, A. A., & Kemp, R. B. (2007). The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochimica Acta, 458(1-2), 65–70.

    Article  CAS  Google Scholar 

  28. Aponasenko, A. D., Shchur, L. A., & Lopatin, V. N. (2007). Relationship of the chlorophyll content with the biomass and disperse structure of phytoplankton. Doklady Biological Sciences, 412(1), 61–63.

    Article  CAS  PubMed  Google Scholar 

  29. Cho, H. U., Kim, Y. M., & Park, J. M. (2017). Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresource Technology, 228, 290–297.

    Article  CAS  PubMed  Google Scholar 

  30. Rashid, N., Park, W. K., & Selvaratnam, T. (2018). Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere, 194, 67–75.

    Article  CAS  PubMed  Google Scholar 

  31. Nam, K., Lee, H., Heo, S. W., Chang, Y. K., & Han, J. I. (2016). Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 29, 1171–1178.

    Article  CAS  Google Scholar 

  32. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668.

    Article  CAS  PubMed  Google Scholar 

  33. Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2010). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23, 721–726.

    Article  CAS  Google Scholar 

  34. Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. C., & Perales, J. A. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24, 477–485.

    Article  Google Scholar 

  35. Zhang, Y., Su, H., Zhong, Y., Zhang, C., Shen, Z., Sang, W., Yan, G., & Zhou, X. (2012). The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Research, 46(17), 5509–5516.

    Article  CAS  PubMed  Google Scholar 

  36. Ma, X., Zhou, W., Fu, Z., Cheng, Y., Min, M., Liu, Y., Zhang, Y., Chen, P., & Ruan, R. (2014). Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology, 167, 8–13.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt, J. J., Gagnon, G. A., & Jamieson, R. C. (2016). Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecological Engineering, 95, 588–593.

    Article  Google Scholar 

  38. Su, Y., Mennerich, A., & Urban, B. (2012). Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresource Technology, 105, 67–73.

    Article  CAS  PubMed  Google Scholar 

  39. Zemke-White, W. L., Clements, K. D., & Harris, P. J. (2000). Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. Journal of Experimental Marine Biology and Ecology, 245(1), 57–68.

    Article  CAS  Google Scholar 

  40. González, C., Marciniak, J., Villaverde, S., García-Encina, P. A., & Muñoz, R. (2008). Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology, 80(5), 891–898.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.

    Article  Google Scholar 

  42. Ren, X., Chen, J., Deschênes, J. S., Tremblay, R., & Jolicoeur, M. (2016). Glucose feeding recalibrates carbon flux distribution and favours lipid accumulation in Chlorella protothecoides through cell energetic management. Algal Research, 14, 83–91.

    Article  Google Scholar 

  43. Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This manuscript was supported by the Project of “Six Talent Peak” of Jiangsu Province (SWYY-025), the Qinglan Project of Jiangsu Province (2016), the Shenlan Project of Jiangsu University of Science and Technology (2015), and the China Scholarship Council (Grant No. 201802180064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyuan Deng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

The authors declare that there are no studies conducted with human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Amoah, P.K., Chen, B. et al. Feasibility of Growing Chlorella sorokiniana on Cooking Cocoon Wastewater for Biomass Production and Nutrient Removal. Appl Biochem Biotechnol 188, 663–676 (2019). https://doi.org/10.1007/s12010-018-02942-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-02942-7

Keywords

Navigation