Skip to main content

Advertisement

Log in

Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lindsley, C. W. (2016) 2015: A new impact factor for ACS Chemical Neuroscience and new topline data for global pharmaceutical products, ACS Publications.

  2. Lindsley, C. W. (2017) New 2016 data and statistics for global pharmaceutical products and projections through 2017, ACS Publications.

  3. Aggarwal, S. R. (2014). What’s fueling the biotech engine-2012 to 2013. Nature Biotechnology, 32(1), 32–39. https://doi.org/10.1038/nbt.2794

    Article  CAS  PubMed  Google Scholar 

  4. Elyasi Gorji, Z., Amiri-Yekta, A., Gourabi, H., Hassani, S., Fatemi, N., Zerehdaran, S., Vakhshiteh, F., & Sanati, M. H. (2015). Cloning and expression of Iranian Turkmen-thoroughbred horse follicle stimulating hormone in Pichia pastoris. Iranian Journal of Biotechnology, 13(2), 10–17. https://doi.org/10.15171/ijb.1004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Elyasi Girji, Z., Amiri-yekta, A., Hassani, S., & Sanati, M. H. (2015). Pichia pastoris yeast: An appropriate experimental tool for recombinant proteins production. Iranian Journal of Biology, 28, 154–177.

    Google Scholar 

  6. Ghasemi, F., Zomorodipour, A., Shojai, S., Ataei, F., Khodabandeh, M., & Sanati, M. H. (2004). Using L-arabinose for production of human growth hormone in Escherichia coli, studying the processing of gIII: hGH precursor. Iranian Journal of Biotechnology, 2, 250–260.

    CAS  Google Scholar 

  7. Tabandeh, F., Shojaosadati, S. A., Zomorodipour, A., Khodabandeh, M., Sanati, M. H., & Yakhchali, B. (2004). Heat-induced production of human growth hormone by high cell density cultivation of recombinant Escherichia coli. Biotechnology Letters, 26(3), 245–250. https://doi.org/10.1023/B:BILE.0000013714.88796.5f

    Article  CAS  PubMed  Google Scholar 

  8. Zomorrodipour, A., Yakhchali, B., Khodabandeh, M., Deezagi, A., Mazinani, S. H., Borujeni, S. V., Raji, M. A., Rahimi, M., Danesh, H. A., & Sanati, M. (2004). The over-expression of biologically active human growth hormone in a T5-based system in Escherichia coli, studying temperature effect. Journal of Sciences, Islamic Republic of Iran, 15, 27–32.

    CAS  Google Scholar 

  9. Kiany, J., Zomorodipour, A., Ahmadzadeh Raji, M., & Sanati, M. H. (2003). Construction of recombinant plasmids for periplasmic expression of human growth hormone in Escherichia coli under T7 and lac promoters. Journal of Sciences, Islamic Republic of Iran, 14, 311–316.

    CAS  Google Scholar 

  10. Majidzadeh-a, K., Khalaj, V., Fatemeh, D., Mahdi, H., Farzaneh, B., Ahmad, A., & Mahboudi, F. (2010). Cloning and expression of functional full-length human tissue plasminogen activator in Pichia pastoris. Applied Biochemistry and Biotechnology, 162(7), 2037–2048. https://doi.org/10.1007/s12010-010-8979-z

    Article  CAS  PubMed  Google Scholar 

  11. Maity, N., Thawani, A., Sharma, A., Gautam, A., Mishra, S., & Sahai, V. (2016). Expression and control of codon-optimized granulocyte colony-stimulating factor in Pichia pastoris. Applied Biochemistry and Biotechnology, 178(1), 159–172. https://doi.org/10.1007/s12010-015-1865-y

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, J. (2012). Mammalian cell protein expression for biopharmaceutical production. Biotechnology Advances, 30(5), 1158–1170. https://doi.org/10.1016/j.biotechadv.2011.08.022

    Article  CAS  PubMed  Google Scholar 

  13. Dalton, A. C., & Barton, W. A. (2014). Over-expression of secreted proteins from mammalian cell lines. Protein Science, 23(5), 517–525. https://doi.org/10.1002/pro.2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Portolano, N., Watson, P. J., Fairall, L., Millard, C. J., Milano, C. P., Song, Y., Cowley, S. M. and Schwabe, J. W. (2014) Recombinant protein expression for structural biology in HEK 293F suspension cells: A novel and accessible approach. JoVE (Journal of Visualized Experiments), e51897-e51897.

  15. Zahn-Zabal, M., Kobr, M., Girod, P.-A., Imhof, M., Chatellard, P., de Jesus, M., Wurm, F., & Mermod, N. (2001). Development of stable cell lines for production or regulated expression using matrix attachment regions. Journal of Biotechnology, 87(1), 29–42. https://doi.org/10.1016/S0168-1656(00)00423-5

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. Y., Kim, Y.-G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: Current state and further potential. Applied Microbiology and Biotechnology, 93(3), 917–930. https://doi.org/10.1007/s00253-011-3758-5

    Article  CAS  PubMed  Google Scholar 

  17. Langer, E. (2016) 2017 biopharmaceutical trends—Opportunities for the new year.

  18. Chin, C. L., Chin, H. K., Chin, C. S., Lai, E. T., & Ng, S. K. (2015). Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese hamster ovary cells. BMC Biotechnology, 15(44). https://doi.org/10.1186/s12896-015-0145-9

  19. Hacker, D. L., De Jesus, M., & Wurm, F. M. (2009). 25 years of recombinant proteins from reactor-grown cells—Where do we go from here? Biotechnology Advances, 27(6), 1023–1027. https://doi.org/10.1016/j.biotechadv.2009.05.008

    Article  CAS  PubMed  Google Scholar 

  20. Bandaranayake, A. D., & Almo, S. C. (2014). Recent advances in mammalian protein production. FEBS Letters, 588(2), 253–260. https://doi.org/10.1016/j.febslet.2013.11.035

    Article  CAS  PubMed  Google Scholar 

  21. Vishwanathan, N., Le, H., Jacob, N. M., Tsao, Y. S., Ng, S. W., Loo, B., Liu, Z., Kantardjieff, A., & Hu, W. S. (2014). Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Biotechnology and Bioengineering, 111(3), 518–528. https://doi.org/10.1002/bit.25117

    Article  CAS  PubMed  Google Scholar 

  22. Betts, Z., Croxford, A. S., & Dickson, A. J. (2015). Evaluating the interaction between UCOE and DHFR-linked amplification and stability of recombinant protein expression. Biotechnology Progress, 31(4), 1014–1025. https://doi.org/10.1002/btpr.2083

    Article  CAS  PubMed  Google Scholar 

  23. Yeo, J. H., Koh, E. Y., Ho, S. C., & Yang, Y. (2014). Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnology Progress, 30, 523–534.

    Article  CAS  PubMed  Google Scholar 

  24. Bailey, L. A., Hatton, D., Field, R., & Dickson, A. J. (2012). Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnology and Bioengineering, 109(8), 2093–2103. https://doi.org/10.1002/bit.24485

    Article  CAS  PubMed  Google Scholar 

  25. Barnes, L. M., Bentley, C. M., & Dickson, A. J. (2003). Stability of protein production from recombinant mammalian cells. Biotechnology and Bioengineering, 81(6), 631–639. https://doi.org/10.1002/bit.10517

    Article  CAS  PubMed  Google Scholar 

  26. Almo, S. C., & Love, J. D. (2014). Better and faster: Improvements and optimization for mammalian recombinant protein production. Current Opinion in Structural Biology, 26, 39–43. https://doi.org/10.1016/j.sbi.2014.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harraghy, N., Buceta, M., Regamey, A., Girod, P.-A., & Mermod, N. (2012). Using matrix attachment regions to improve recombinant protein production. Protein Expression in Mammalian Cells: Methods and Protocols, 93–110. https://doi.org/10.1007/978-1-61779-352-3_7

  28. Chusainow, J., Yang, Y. S., Yeo, J. H., Toh, P. C., Asvadi, P., Wong, N. S., & Yap, M. G. (2009). A study of monoclonal antibody-producing CHO cell lines: What makes a stable high producer? Biotechnology and Bioengineering, 102(4), 1182–1196. https://doi.org/10.1002/bit.22158

    Article  CAS  PubMed  Google Scholar 

  29. Goetze, S., Baer, A., Winkelmann, S., Nehlsen, K., Seibler, J., Maass, K., & Bode, J. (2005). Performance of genomic bordering elements at predefined genomic loci. Molecular and Cellular Biology, 25(6), 2260–2272. https://doi.org/10.1128/MCB.25.6.2260-2272.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeppesen, P., Mitchell, A., Turner, B., & Perry, P. (1992). Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centric heterochromatin in human metaphase chromosomes. Chromosoma, 101(5-6), 322–332. https://doi.org/10.1007/BF00346011

    Article  CAS  PubMed  Google Scholar 

  31. Peters, A. H., O'Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C., Weipoltshammer, K., Pagani, M., Lachner, M., & Kohlmaier, A. (2001). Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell, 107(3), 323–337. https://doi.org/10.1016/S0092-8674(01)00542-6

    Article  CAS  PubMed  Google Scholar 

  32. Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., & Kioussis, D. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science, 271(5252), 1123–1125. https://doi.org/10.1126/science.271.5252.1123

    Article  CAS  PubMed  Google Scholar 

  33. Kim, H. Y. (2006) Improved expression vector activity using insulators and scaffold/matrix-attachment regions. BioProcess International.

  34. Kostyrko, K., Neuenschwander, S., Junier, T., Regamey, A., Iseli, C., Schmid- Siegert, E., Bosshard, S., Majocchi, S., Le Fourn, V., & Girod, P. A. (2017). Mar- mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnology and Bioengineering, 114(2), 384–396. https://doi.org/10.1002/bit.26086

    Article  CAS  PubMed  Google Scholar 

  35. Phi-Van, L., Von Kries, J., Ostertag, W., & Strätling, W. (1990). The chicken lysozyme 5′ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Molecular and Cellular Biology, 10(5), 2302–2307. https://doi.org/10.1128/MCB.10.5.2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J., Kollhoff, A., Bergmann, A., & Stubbs, L. (2003). Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Human Molecular Genetics, 12(3), 233–245. https://doi.org/10.1093/hmg/ddg028

    Article  CAS  PubMed  Google Scholar 

  37. Girod, P. A., Zahn- Zabal, M., & Mermod, N. (2005). Use of the chicken lysozyme 5′ matrix attachment region to generate high producer CHO cell lines. Biotechnology and Bioengineering, 91(1), 1–11. https://doi.org/10.1002/bit.20563

    Article  CAS  PubMed  Google Scholar 

  38. Crombie, R. L. and Williams, S. G. (2010) Vectors comprising CpG islands without position effect varigation and having increased expression, US Patent pp. 148.

  39. Neville, J. J., Orlando, J., Mann, K., McCloskey, B., & Antoniou, M. N. (2017). Ubiquitous chromatin-opening elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnology Advances., 35(5), 557–564. https://doi.org/10.1016/j.biotechadv.2017.05.004

    Article  CAS  PubMed  Google Scholar 

  40. Hou, J. J. C., Hughes, B. S., Smede, M., Leung, K. M., Levine, K., Rigby, S., Gray, P. P., & Munro, T. P. (2014). High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. New Biotechnology, 31(3), 214–220. https://doi.org/10.1016/j.nbt.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  41. Nair, A. R., Jinger, X., & Hermiston, T. W. (2011). Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII. BMC Research Notes, 4(1), 178. https://doi.org/10.1186/1756-0500-4-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams, S., Mustoe, T., Mulcahy, T., Griffiths, M., Simpson, D., Antoniou, M., Irvine, A., Mountain, A., & Crombie, R. (2005). CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnology, 5(1), 17. https://doi.org/10.1186/1472-6750-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Šenigl, F., Plachý, J., & Hejnar, J. (2008). The core element of a CpG island protects avian sarcoma and leukosis virus-derived vectors from transcriptional silencing. Journal of Virology, 82(16), 7818–7827. https://doi.org/10.1128/JVI.00419-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho, S. C., Yap, M. G., & Yang, Y. (2010). Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expression and Purification, 69, 9–15.

    Article  CAS  PubMed  Google Scholar 

  45. Kaufman, W. L., Kocman, I., Agrawal, V., Rahn, H.-P., Besser, D., & Gossen, M. (2008). Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation. Nucleic Acids Research, 36, e111-e111.

    Article  CAS  Google Scholar 

  46. Hojati, Z., & Dehghanian, F. (2015). Enhanced expression of bioactive recombinant VEGF-111 with insertion of intronic sequence in mammalian cell lines. Applied Biochemistry and Biotechnology, 175(8), 3737–3749. https://doi.org/10.1007/s12010-015-1541-2

    Article  CAS  PubMed  Google Scholar 

  47. Costa, A. R., Rodrigues, M. E., Henriques, M., Azeredo, J., & Oliveira, R. (2010). Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 74(2), 127–138. https://doi.org/10.1016/j.ejpb.2009.10.002

    Article  CAS  Google Scholar 

  48. Deer, J. R., & Allison, D. S. (2004). High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1α gene. Biotechnology Progress, 20, 880–889.

    Article  CAS  Google Scholar 

  49. Yang, Y., Chusainow, J., & Yap, M. G. (2010). DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. Journal of Biotechnology, 147(3-4), 180–185. https://doi.org/10.1016/j.jbiotec.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  50. Paredes, V., Park, J. S., Jeong, Y., Yoon, J., & Baek, K. (2013). Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnology Letters, 35(7), 987–993. https://doi.org/10.1007/s10529-013-1168-8

    Article  CAS  PubMed  Google Scholar 

  51. Kwok-Keung Chan, K., Meiyun Wu, S., Morin Nissom, P., Oh, S. K., & Choo, A. B. (2008). Generation of high-level stable transgene expressing human embryonic stem cell lines using Chinese hamster elongation factor-1α promoter system. Stem Cells and Development, 17(4), 825–836. https://doi.org/10.1089/scd.2007.0233

    Article  Google Scholar 

  52. Ho, S. C., Yeo, J. H., Fang, S. G., & Yang, Y. (2015). Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected cho cells. Molecular Biotechnology, 57(2), 138–144. https://doi.org/10.1007/s12033-014-9809-2

    Article  CAS  PubMed  Google Scholar 

  53. Ho, S. C., Koh, E. Y., Soo, B. P., Chao, S.-H., & Yang, Y. (2016). Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnology, 16(71), 71. https://doi.org/10.1186/s12896-016-0300-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalwy, S., Rance, J., Norman, A. and Gay, R. (2007) Towards stronger gene expression—a promoter’s tale, in Cell technology for cell products, Springer: pp. 19–28, DOI: https://doi.org/10.1007/978-1-4020-5476-1_3.

  55. Araki, Y., Hamafuji, T., Noguchi, C., & Shimizu, N. (2012). Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS One, 7(7), e41787. https://doi.org/10.1371/journal.pone.0041787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Noguchi, C., Araki, Y., Miki, D., & Shimizu, N. (2012). Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS One, 7(12), e52990. https://doi.org/10.1371/journal.pone.0052990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kito, M., Itami, S., Fukano, Y., Yamana, K., & Shibui, T. (2002). Construction of engineered CHO strains for high-level production of recombinant proteins. Applied Microbiology and Biotechnology, 60(4), 442–448. https://doi.org/10.1007/s00253-002-1134-1

    Article  CAS  PubMed  Google Scholar 

  58. Cacciatore, J. J., Chasin, L. A., & Leonard, E. F. (2010). Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnology Advances, 28(6), 673–681. https://doi.org/10.1016/j.biotechadv.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  59. Missirlis, P. I., Smailus, D. E., & Holt, R. A. (2006). A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics, 7(1), 73. https://doi.org/10.1186/1471-2164-7-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colcher, D., Milenic, D., Roselli, M., Raubitschek, A., Yarranton, G., King, D., Adair, J., Whittle, N., Bodmer, M., & Schlom, J. (1989). Characterization and biodistribution of recombinant and recombinant/chimeric constructs of monoclonal antibody B72. 3. Cancer Research, 49(7), 1738–1745.

    CAS  PubMed  Google Scholar 

  61. Obayashi, H., Kawabe, Y., Makitsubo, H., Watanabe, R., Kameyama, Y., Huang, S., Takenouchi, Y., Ito, A., & Kamihira, M. (2012). Accumulative gene integration into a pre-determined site using Cre/loxP. Journal of Bioscience and Bioengineering, 113(3), 381–388. https://doi.org/10.1016/j.jbiosc.2011.10.027

    Article  CAS  PubMed  Google Scholar 

  62. Kameyama, Y., Kawabe, Y., Ito, A., & Kamihira, M. (2010). An accumulative site-specific gene integration system using Cre recombinase-mediated cassette exchange. Biotechnology and Bioengineering, 105(6), 1106–1114. https://doi.org/10.1002/bit.22619

    Article  CAS  PubMed  Google Scholar 

  63. Kawabe, Y., Makitsubo, H., Kameyama, Y., Huang, S., Ito, A., & Kamihira, M. (2012). Repeated integration of antibody genes into a pre-selected chromosomal locus of CHO cells using an accumulative site-specific gene integration system. Cytotechnology, 64(3), 267–279. https://doi.org/10.1007/s10616-011-9397-y

    Article  CAS  PubMed  Google Scholar 

  64. Kawabe, Y., Inao, T., Komatsu, S., Ito, A. and Kamihira, M. (2015) Cre-mediated cellular modification for establishing producer CHO cells of recombinant scFv-Fc. BMC Proceedings, vol. 9, BioMed Central Ltd: pp. P5

  65. Matsuyama, R., Tsutsui, T., Lee, K. H., Onitsuka, M., & Omasa, T. (2015). Improved gene amplification by cell-cycle engineering combined with the Cre-loxP system in Chinese hamster ovary cells. Journal of Bioscience and Bioengineering, 120(6), 701–708. https://doi.org/10.1016/j.jbiosc.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  66. Raymond, C. S., & Soriano, P. (2007). High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS One, 2(1), e162. https://doi.org/10.1371/journal.pone.0000162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huang, Y., Li, Y., Wang, Y. G., Gu, X., Wang, Y., & Shen, B. F. (2007). An efficient and targeted gene integration system for high-level antibody expression. Journal of Immunological Methods, 322(1-2), 28–39. https://doi.org/10.1016/j.jim.2007.01.022

    Article  CAS  PubMed  Google Scholar 

  68. Zhou, H., Liu, Z.-g., Sun, Z.-w., Huang, Y., & Yu, W.-y. (2010). Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Journal of Biotechnology, 147(2), 122–129. https://doi.org/10.1016/j.jbiotec.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  69. Thyagarajan, B. and Calos, M. P. (2005) Site-specific integration for high-level protein production in mammalian cells. Therapeutic Proteins: Methods and Protocols, 99–106, DOI: https://doi.org/10.1385/1-59259-922-2:099.

  70. Katzen, F. (2007). Gateway® recombinational cloning: A biological operating system. Expert Opinion on Drug Discovery, 2(4), 571–589. https://doi.org/10.1517/17460441.2.4.571

    Article  CAS  PubMed  Google Scholar 

  71. Hartley, J. L., Temple, G. F., & Brasch, M. A. (2000). DNA cloning using in vitro site-specific recombination. Genome Research, 10(11), 1788–1795. https://doi.org/10.1101/gr.143000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lewis, N. E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O'Brien, E., Bordbar, A., Roth, A. M., Rosenbloom, J., & Bian, C. (2013). Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nature Biotechnology, 31(8), 759–765. https://doi.org/10.1038/nbt.2624

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. S., Kallehauge, T. B., Pedersen, L. E. and Kildegaard, H. F. (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 5.

  74. Carroll, D. (2014). Genome engineering with targetable nucleases. Annual Review of Biochemistry, 83(1), 409–439. https://doi.org/10.1146/annurev-biochem-060713-035418

    Article  CAS  PubMed  Google Scholar 

  75. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., & Marraffini, L. A. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lombardo, A., Cesana, D., Genovese, P., Di Stefano, B., Provasi, E., Colombo, D. F., Neri, M., Magnani, Z., Cantore, A., & Riso, P. L. (2011). Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nature Methods, 8(10), 861–869. https://doi.org/10.1038/nmeth.1674

    Article  CAS  PubMed  Google Scholar 

  77. Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., & Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ronda, C., Pedersen, L. E., Hansen, H. G., Kallehauge, T. B., Betenbaugh, M. J., Nielsen, A. T., & Kildegaard, H. F. (2014). Accelerating genome editing in CHO cells using CRISPR Cas9 and CRISPy, a web-based target finding tool. Biotechnology and Bioengineering, 111(8), 1604–1616. https://doi.org/10.1002/bit.25233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, Y., Liu, S., Cheng, Y., Nie, L., Lv, C., Wang, G., Zhang, Y., & Hao, L. (2016). Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Applied Biochemistry and Biotechnology, 180(4), 655–667. https://doi.org/10.1007/s12010-016-2122-8

    Article  CAS  PubMed  Google Scholar 

  80. Lee, J. S., Grav, L. M., Lewis, N. E., & Faustrup Kildegaard, H. (2015). CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 10(7), 979–994. https://doi.org/10.1002/biot.201500082

    Article  CAS  PubMed  Google Scholar 

  81. Shin, J., Lee, N., Song, Y., Park, J., Kang, T. J., Kim, S. C., Lee, G. M., & Cho, B.-K. (2015). Efficient CRISPR/Cas9-mediated multiplex genome editing in CHO cells via high-level sgRNA-Cas9 complex. Biotechnology and Bioprocess Engineering, 20(5), 825–833. https://doi.org/10.1007/s12257-015-0233-7

    Article  CAS  Google Scholar 

  82. Grav, L. M., Lee, J. S., Gerling, S., Kallehauge, T. B., Hansen, A. H., Kol, S., Lee, G. M., Pedersen, L. E., & Kildegaard, H. F. (2015). One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnology Journal, 10(9), 1446–1456. https://doi.org/10.1002/biot.201500027

    Article  CAS  PubMed  Google Scholar 

  83. Grav, L. M., la Cour Karottki, K. J., Lee, J. S. and Kildegaard, H. F. (2017) Application of CRISPR/Cas9 genome editing to improve recombinant protein production in CHO cells. Heterologous Protein Production in CHO Cells: Methods and Protocols, 101–118, DOI: https://doi.org/10.1007/978-1-4939-6972-2_7.

  84. Fischer, S., Buck, T., Wagner, A., Ehrhart, C., Giancaterino, J., Mang, S., Schad, M., Mathias, S., Aschrafi, A., & Handrick, R. (2014). A functional high-content miRNA screen identifies miR-30 family to boost recombinant protein production in CHO cells. Biotechnology Journal, 9(10), 1279–1292. https://doi.org/10.1002/biot.201400306

    Article  CAS  PubMed  Google Scholar 

  85. Lee, J. S., Ha, T. K., Park, J. H., & Lee, G. M. (2013). Anti-cell death engineering of CHO cells: Co-overexpression of Bcl-2 for apoptosis inhibition, Beclin-1 for autophagy induction. Biotechnology and Bioengineering, 110(8), 2195–2207. https://doi.org/10.1002/bit.24879

    Article  CAS  PubMed  Google Scholar 

  86. Jazayeri, S. H., Amiri-Yekta, A., Gourabi, H., Emami, B. A., Halfinezhad, Z., Abolghasemi, S., Fatemi, N., Daneshipour, A., Ghahremani, M. H., & Sanati, M. H. (2017). Comparative assessment on the expression level of recombinant human follicle-stimulating hormone (FSH) in serum-containing versus protein-free culture media. Molecular Biotechnology, 59(11-12), 490–498. https://doi.org/10.1007/s12033-017-0037-4

    Article  CAS  PubMed  Google Scholar 

  87. Du, Z., Treiber, D., McCarter, J. D., Fomina- Yadlin, D., Saleem, R. A., McCoy, R. E., Zhang, Y., Tharmalingam, T., Leith, M., & Follstad, B. D. (2015). Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnology and Bioengineering, 112(1), 141–155. https://doi.org/10.1002/bit.25332

    Article  CAS  PubMed  Google Scholar 

  88. Delphi, L., Sepehri, H., Khorramizadeh, M. R., & Mansoori, F. (2015). Pectic-oligoshaccharides from apples induce apoptosis and cell cycle arrest in MDA-MB-231 cells, a model of human breast cancer. Asian Pacific Journal of Cancer Prevention, 16(13), 5265–5271. https://doi.org/10.7314/APJCP.2015.16.13.5265

    Article  PubMed  Google Scholar 

  89. Tarighi, P., Montazeri, H., & Khorramizadeh, M. (2015). uPAR peptide antagonist alters regulation of MAP kinases and Bcl-2 family members in favor of apoptosis in MDA-MB-231 cell line. Research in Pharmaceutical Sciences, 10, 200.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Jossé, L., Smales, C. M. and Tuite, M. F. (2012) Engineering the chaperone network of CHO cells for optimal recombinant protein production and authenticity, in Recombinant gene expression, Springer: pp. 595–608, DOI: https://doi.org/10.1007/978-1-61779-433-9_32.

  91. Kim, N. S., & Lee, G. M. (2002). Response of recombinant Chinese hamster ovary cells to hyperosmotic pressure: Effect of Bcl-2 overexpression. Journal of Biotechnology, 95(3), 237–248. https://doi.org/10.1016/S0168-1656(02)00011-1

    Article  CAS  PubMed  Google Scholar 

  92. Majors, B. S., Betenbaugh, M. J., Pederson, N. E., & Chiang, G. G. (2008). Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bcl-xL. Biotechnology and Bioengineering, 101(3), 567–578. https://doi.org/10.1002/bit.21917

    Article  CAS  PubMed  Google Scholar 

  93. Iz, S. G., Inevi, M. A., Metiner, P. S., Tamis, D. A. and Kisbet, N. (2017) A biodesign approach to obtain high yields of biosimilars by anti-apoptotic cell engineering: A case study to increase the production yield of anti-TNF alpha producing recombinant CHO cells. Applied Biochemistry and Biotechnology, 1–20.

  94. Kaufmann, H., Mazur, X., Marone, R., Bailey, J. E., & Fussenegger, M. (2001). Comparative analysis of two controlled proliferation strategies regarding product quality, influence on tetracycline-regulated gene expression, and productivity. Biotechnology and Bioengineering, 72(6), 592–602. https://doi.org/10.1002/1097-0290(20010320)72:6<592::AID-BIT1024>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  95. Lee, K. H., Honda, K., Ohtake, H. and Omasa, T. (2013) Construction of transgene-amplified CHO cell lines by cell cycle checkpoint engineering. BMC Proceedings, vol. 7, BioMed Central Ltd: pp. O7

  96. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22(11), 1393–1398. https://doi.org/10.1038/nbt1026

    Article  CAS  PubMed  Google Scholar 

  97. Sunley, K., & Butler, M. (2010). Strategies for the enhancement of recombinant protein production from mammalian cells by growth arrest. Biotechnology Advances, 28(3), 385–394. https://doi.org/10.1016/j.biotechadv.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  98. Jeon, M., & Lee, G. M. (2007). Correlation between enhancing effect of sodium butyrate on specific productivity and mRNA transcription level in recombinant Chinese hamster ovary cells producing antibody. Journal of Microbiology and Biotechnology, 17, 1036.

    CAS  PubMed  Google Scholar 

  99. Yoon, S. K., Choi, S. L., Song, J. Y., & Lee, G. M. (2005). Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0°C. Biotechnology and Bioengineering, 89(3), 345–356. https://doi.org/10.1002/bit.20353

    Article  CAS  PubMed  Google Scholar 

  100. Goetze, A. M., Liu, Y. D., Zhang, Z., Shah, B., Lee, E., Bondarenko, P. V., & Flynn, G. C. (2011). High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology, 21(7), 949–959. https://doi.org/10.1093/glycob/cwr027

    Article  CAS  PubMed  Google Scholar 

  101. Jadhav, V., Hackl, M., Druz, A., Shridhar, S., Chung, C.-Y., Heffner, K. M., Kreil, D. P., Betenbaugh, M., Shiloach, J., & Barron, N. (2013). CHO microRNA engineering is growing up: Recent successes and future challenges. Biotechnology Advances, 31(8), 1501–1513. https://doi.org/10.1016/j.biotechadv.2013.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fatemi, N., Sanati, M. H., Shamsara, M., Moayer, F., Zavarehei, M. J., Pouya, A., Sayyahpour, F., Ayat, H., & Gourabi, H. (2014). TBHP-induced oxidative stress alters microRNAs expression in mouse testis. Journal of Assisted Reproduction and Genetics, 31(10), 1287–1293. https://doi.org/10.1007/s10815-014-0302-4

    Article  PubMed  PubMed Central  Google Scholar 

  103. Druz, A., Son, Y. J., Betenbaugh, M., & Shiloach, J. (2013). Stable inhibition of mmu-miR-466h-5p improves apoptosis resistance and protein production in CHO cells. Metabolic Engineering, 16, 87–94. https://doi.org/10.1016/j.ymben.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fischer, S., Marquart, K. F., Pieper, L. A., Fieder, J., Gamer, M., Gorr, I., Schulz, P., & Bradl, H. (2017). miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Biotechnology and Bioengineering, 114(7), 1495–1510. https://doi.org/10.1002/bit.26280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jadhav, V., Hackl, M., Klanert, G., Bort, J. A. H., Kunert, R., Grillari, J., & Borth, N. (2014). Stable overexpression of miR-17 enhances recombinant protein production of CHO cells. Journal of Biotechnology, 175, 38–44. https://doi.org/10.1016/j.jbiotec.2014.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sanchez, N., Kelly, P., Gallagher, C., Lao, N. T., Clarke, C., Clynes, M., & Barron, N. (2014). Cho cell culture longevity and recombinant protein yield are enhanced by depletion of miR-7 activity via sponge decoy vectors. Biotechnology Journal, 9(3), 396–404. https://doi.org/10.1002/biot.201300325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Alireza Yousefzadeh for editing this manuscript. This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hossein Sanati or Mohammad Reza Khorramizadeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazayeri, S.H., Amiri-Yekta, A., Bahrami, S. et al. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 185, 986–1003 (2018). https://doi.org/10.1007/s12010-017-2689-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2689-8

Keywords

Navigation