Skip to main content
Log in

Enzymatic Hydrolysis of Black Liquor Xylan by a Novel Xylose-Tolerant, Thermostable β-Xylosidase from a Tropical Strain of Aureobasidium pullulans CBS 135684

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg−1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min−1 mg−1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g−1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g−1 β-xylosidase and 16 U g−1 xylanase after incubation for 4 h at 70 °C and pH 6.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hu, J., Davies, J., Mok, Y. K., Gene, B., Lee, Q. F., Arato, C., & Saddler, J. N. (2016). Enzymatic hydrolysis of industrial derived xylo-oligomers to monomeric sugars for potential chemical/biofuel production. ACS Sustainable Chemistry & Engineering, 4, 7130–7136.

    Article  CAS  Google Scholar 

  2. Quiñones, T. S., Retter, A., Hobbs, P. J., Budde, J., Heiermann, M., Plöchl, M., & Ravella, S. R. (2015). Production of xylooligosaccharides from renewable agricultural lignocellulose biomass. Biofuels, 6, 147–155.

    Article  Google Scholar 

  3. Lisboa, S. A., Evtuguin, D. V., Neto, C. P., & Goodfellow, B. J. (2005). Isolation and structural characterization of polysaccharides dissolved in Eucalyptus globulus kraft black liquors. Carbohydrate Polymers, 60, 77–85.

    Article  CAS  Google Scholar 

  4. Bankeeree, W., Prasongsuk, S., Imai, T., Lotrakul, P., & Punnapayak, H. (2016). A novel xylan-polyvinyl alcohol hydrogel bead with laccase entrapment for decolorization of reactive black 5. BioResources, 11, 6984–7000.

    Article  CAS  Google Scholar 

  5. Kumar, K. S., Arumugam, N., Permaul, K., & Singh, S. (2016). Thermostable enzymes and their industrial applications. Microbial Biotechnology: An Interdisciplinary Approach, Taylor and Francis, CRC Press, Boca Raton, Florida. Chapter 5, pp. 115162.

  6. Shao, W., Xue, Y., Wu, A., Kataeva, I., Pei, J., Wu, H., & Wiegel, J. (2011). Characterization of a novel β-Xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Applied and Environmental Microbiology, 77, 719–726.

    Article  CAS  Google Scholar 

  7. Leathers, T. D. (1986). Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Applied and Environmental Microbiology, 52, 1026–1030.

    CAS  Google Scholar 

  8. Manitchotpisit, P., Leathers, T. D., Peterson, S. W., Kurtzman, C. P., Li, X. L., Eveleigh, D. E., Lotrakul, P., Prasongsuk, S., Dunlap, C. A., Vermillion, K. E., & Punnapayak, H. (2009). Multilocus phylogenetic analyses, pullulan production and xylanase activity of tropical isolates of Aureobasidium pullulans. Mycological Research, 113, 1107–1120.

    Article  CAS  Google Scholar 

  9. Bankeeree, W., Lotrakul, P., Prasongsuk, S., Chaiareekij, S., Eveleigh, D. E., Kim, S. W., & Punnapayak, H. (2014). Effect of polyols on thermostability of xylanase from a tropical isolate of Aureobasidium pullulans and its application in prebleaching of rice straw pulp. SpringerPlus, 3, 37–48.

    Article  Google Scholar 

  10. Terrasan, C. R. F., Guisan, J. M., & Carmona, E. C. (2016). Xylanase and β-xylosidase from Penicillium janczewskii: purification, characterization and hydrolysis of substrates. Electronic Journal of Biotechnology, 23, 54–62.

    Article  CAS  Google Scholar 

  11. Li, H., Liu, J., Wu, J., Xue, Y., Gan, L., & Long, M. (2014). Comparative analysis of enzymatic hydrolysis of miscanthus xylan using Aspergillus niger, Hypocrea orientalis, and Trichoderma reesei xylan-degrading enzymes. BioResources, 9, 2191–2202.

    Google Scholar 

  12. Bankeeree, W., Lotrakul, P., Prasongsuk, S., Kim, S. W., & Punnapayak, H. (2016). Enhanced production of cellulase-free thermoactive xylanase using corncob by a black yeast, Aureobasidium pullulans CBS 135684. Korean Chemical Engineering Research, 54, 822–829.

    Article  CAS  Google Scholar 

  13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  14. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  16. Lemmnitzer, K., Süß, R., & Schiller, J. (2015). TLC/MALDI MS of carbohydrates planar chromatography—mass spectrometry (pp. 327–344). Boca Raton, Florida: CRC Press.

    Book  Google Scholar 

  17. Box, G. E., & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–475.

    Article  Google Scholar 

  18. Iembo, T., Da Silva, R., Pagnocca, F. C., & Gomes, E. (2002). Production, characterization, and properties of β-glucosidase and β-xylosidase from a strain of Aureobasidium sp. Applied Biochemistry and Microbiology, 38, 549–552.

    Article  CAS  Google Scholar 

  19. Ohta, K., Fujimoto, H., Fujii, S., & Wakiyama, M. (2010). Cell-associated β-xylosidase from Aureobasidium pullulans ATCC 20524: Purification, properties, and characterization of the encoding gene. Journal of Bioscience and Bioengineering, 110, 152–157.

    Article  CAS  Google Scholar 

  20. Dobberstein, J., & Emeis, C. C. (1991). Purification and characterization of β-xylosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology, 35, 210–215.

    Article  CAS  Google Scholar 

  21. Jain, I., Kumar, V., & Satyanarayana, T. (2014). Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides. Bioresource Technology, 170, 462–469.

    Article  CAS  Google Scholar 

  22. Semenova, M. V., Drachevskaya, M. I., Sinitsyna, O. A., Gusakov, A. V., & Sinitsyn, A. P. (2009). Isolation and properties of extracellular β-xylosidases from fungi Aspergillus japonicus and Trichoderma reesei. Biochemistry (Moscow), 74, 1002–1008.

    Article  CAS  Google Scholar 

  23. Díaz-Malváez, F. I., García-Almendárez, B. E., Hernández-Arana, A., Amaro-Reyes, A., & Regalado-González, C. (2013). Isolation and properties of β-xylosidase from Aspergillus niger GS1 using corn pericarp upon solid state fermentation. Process Biochemistry, 48, 1018–1024.

    Article  Google Scholar 

  24. Kirikyali, N., Wood, J., & Connerton, I. F. (2014). Characterisation of a recombinant β-xylosidase (xylA) from Aspergillus oryzae expressed in Pichia pastoris. AMB Express, 4, 68–74.

    Article  Google Scholar 

  25. Saha, B. C. (2003). Purification and properties of an extracellular β-xylosidase from a newly isolated Fusarium proliferatum. Bioresource Technology, 90, 33–38.

    Article  CAS  Google Scholar 

  26. Iembo, T., Azevedo, M. O., Bloch Jr., C., & Filho, E. X. F. (2006). Purification and partial characterization οf a new β-xylosidase from Humicola grisea var. thermoidea. World Journal of Microbiology and Biotechnology, 22, 475–479.

    Article  CAS  Google Scholar 

  27. Xia, W., Shi, P., Xu, X., Qian, L., Cui, Y., Xia, M., & Yao, B. (2015). High level expression of a novel family 3 neutral β-xylosidase from Humicola insolens Y1 with high tolerance to d-xylose. PloS One, 10, e0117578.

    Article  Google Scholar 

  28. Knob, A., & Carmona, E. C. (2012). Purification and properties of an acid β-xylosidase from Penicillium sclerotiorum. Annals of Microbiology, 62, 501–508.

    Article  CAS  Google Scholar 

  29. Teng, C., Jia, H., Yan, Q., Zhou, P., & Jiang, Z. (2011). High-level expression of extracellular secretion of a β-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresource Technology, 102, 1822–1830.

    Article  CAS  Google Scholar 

  30. Nieto-Domínguez, M., de Eugenio, L. I., Barriuso, J., Prieto, A., de Toro, B. F., Canales-Mayordomo, Á., & Martínez, M. J. (2015). Characterization of a novel pH-stable GH3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation. Applied and Environmental Microbiology, 81, 6380–6392.

    Article  Google Scholar 

  31. Lenartovicz, V., de Souza, C. G. M., Moreira, F. G., & Peralta, R. M. (2003). Temperature and carbon source affect the production and secretion of a thermostable β-xylosidase by Aspergillus fumigatus. Process Biochemistry, 38, 1775–1780.

    Article  CAS  Google Scholar 

  32. Yan, Q. J., Wang, L., Jiang, Z. Q., Yang, S. Q., Zhu, H. F., & Li, L. T. (2008). A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresource Technology, 99, 5402–5410.

    Article  CAS  Google Scholar 

  33. Singh, S. M., Cabello-Villegas, J., Hutchings, R. L., & Mallela, K. M. G. (2010). Role of partial protein unfolding in alcohol-induced protein aggregation. Proteins: Structure, Function, and Bioinformatics, 78, 2625–2637.

    CAS  Google Scholar 

  34. Katapodis, P., Nerinckx, W., Claeyssens, M., & Christakopoulos, P. (2006). Purification and characterization of a thermostable intracellular β-xylosidase from the thermophilic fungus Sporotrichum thermophile. Process Biochemistry, 41, 2402–2409.

    Article  CAS  Google Scholar 

  35. Terrasan, C. R., Temer, B., Sarto, C., Silva, J. F. G., & Carmona, E. C. (2013). Xylanase and β-xylosidase from Penicillium janczewskii: production, physico-chemical properties, and application of the crude extract to pulp biobleaching. BioResources, 8, 1292–1305.

    Article  Google Scholar 

  36. Jordan, D. B., & Braker, J. D. (2007). Inhibition of the two-subsite β-d-xylosidase from Selenomonas ruminantium by sugars: competitive, noncompetitive, double binding, and slow binding modes. Archives of Biochemistry and Biophysics, 465, 231–246.

    Article  CAS  Google Scholar 

  37. Jönsson, A.-S., Nordin, A.-K., & Wallberg, O. (2008). Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chemical Engineering Research and Design, 86, 1271–1280.

    Article  Google Scholar 

  38. Kambourova, M., Mandeva, R., Fiume, I., Maurelli, L., Rossi, M., & Morana, A. (2007). Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. Journal of Applied Microbiology, 102, 1586–1593.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was performed under the Core-to-Core Program, which was financially supported by the Japan Society for the Promotion of Science (JSPS), National Research Council of Thailand (NRCT), Vietnam Ministry of Science and Technology (MOST), the National University of Laos, Beuth University of Applied Sciences, and Brawijaya University. In addition, financial support from the Rachadapisek Somphot Endowment under Outstanding Research Performance Program and the Rachadapisek Sompote Fund for Postdoctoral Fellowship, Chulalongkorn University, are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehanat Prasongsuk.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankeeree, W., Akada, R., Lotrakul, P. et al. Enzymatic Hydrolysis of Black Liquor Xylan by a Novel Xylose-Tolerant, Thermostable β-Xylosidase from a Tropical Strain of Aureobasidium pullulans CBS 135684. Appl Biochem Biotechnol 184, 919–934 (2018). https://doi.org/10.1007/s12010-017-2598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2598-x

Keywords

Navigation