Skip to main content
Log in

Co-production of Fructooligosaccharides and Levan by Levansucrase from Bacillus subtilis natto with Potential Application in the Food Industry

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fructooligosaccharides and levan have a wide range of applications in the food industry due to their physiological and functional properties. The enzymatic synthesis of these molecules exhibits great advantages when compared with microbial fermentation. In this study, the production of levansucrase from Bacillus subtilis natto and its utilization in fructooligosaccharides and levan syntheses using different reaction conditions were described. The best condition for levansucrase production was 420.7 g L−1 of sucrose at pH 7.0, which reached 23.9 U ml−1 of transfructosylation activity. In a bioreactor, the highest production of fructooligosaccharides was 41.3 g L−1 using a medium containing 350 g L−1 sucrose at 35 °C for 36 h. The enzymatic synthesis of levan resulted in 86.9 g L−1 when conditions similar to those used for fructooligosaccharides synthesis were applied. These results indicate that the levansucrase from B. subtilis natto could be applied for the co-production of fructooligosaccharides and levan, which are biomolecules that have health benefits and are used successfully in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., & Henrissat, B. (2009). The carbohydrate active enzymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research, 37, 233–238.

    Article  Google Scholar 

  2. Wuerges, J., Caputi, L., Cianci, M., Boivin, S., Meijers, R., & Benini, S. (2015). The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site. Journal of Structural Biology, 190, 290–298.

    Article  Google Scholar 

  3. Guio, F., Rugeles, L. D., Rojas, S. E., Palomino, M. P., Camargo, M. C., & Sánchez, O. F. (2012). Kinetic modeling of fructooligosaccharide production using Aspergillus oryzae N74. Applied Biochemistry and Biotechnology, 167, 142–163.

    Article  CAS  Google Scholar 

  4. Linde, D., Rodríguez-Colinas, B., Estévez, M., Poveda, A., Plou, F. J., & Fernández Lobato, M. (2012). Analysis of neofructooligosaccharides production mediated by the extracellular β-fructofuranosidase from Xanthophyllomyces dendrorhous. Bioresource Technology, 109, 123–130.

    Article  CAS  Google Scholar 

  5. Santos-Moriano, P., Fernandez-Arrojo, L., Poveda, A., Jimenez-Barbero, J., Ballesteros, A. O., & Plou, F. J. (2015). Levan versus fructooligosaccharide synthesis using the levansucrase from Zymomonas mobilis: effect of reaction conditions. Journal of Molecular Catalysis B: Enzymatic, 119, 18–25.

    Article  CAS  Google Scholar 

  6. Srikanth, R., Reddy, C. H. S. S. S., Siddartha, G., Ramaiah, M. J., & Uppuluri, K. B. (2015). Review on production , characterization and applications of microbial levan. Carbohydrate Polymers, 120, 102–114.

    Article  CAS  Google Scholar 

  7. Shih, I. L., Chen, L. D., Wang, T. C., Wu, J. Y., & Liaw, K. S. (2010). Tandem production of levan and ethanol by microbial fermentation. Green Chemistry, 12, 1242–1247.

    Article  CAS  Google Scholar 

  8. Franken, J., Brandt, B. A., Tai, S. L., & Bauer, F. F. (2013). Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PloS One, 8, 1–14.

    Article  Google Scholar 

  9. Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: a review. Carbohydrate Polymers, 68, 587–597.

    Article  CAS  Google Scholar 

  10. Roberfroid, M. (2007). Prebiotics : the concept revisited. Journal of Nutrition, 137, 830–837.

    Article  Google Scholar 

  11. Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M., & Bressollier, P. (2013). An overview of the last advances in probiotic and prebiotic field. LWT - Food Science and Technology, 50, 1–16.

    Article  CAS  Google Scholar 

  12. Hangit, Y. W., & Clarke, M. A. (1990). Production and characterization of microbial levan. Advances in Applied Microbiology, 35, 393–396.

    Google Scholar 

  13. Jang, K., Song, K., Kim, C. H., Chung, B. H., Kang, S. A., Choue, R. W., & Rhee, S. (2001). Comparison of characteristics of levan produced by different preparations of levansucrase from Zymomonas mobilis. Enzyme and Microbial Technology, 19, 339–344.

    Google Scholar 

  14. Yun, J. W. (1996). Fructooligosaccharides—occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117.

    Article  CAS  Google Scholar 

  15. Shih, I.-L., Chen, L.-D., & Wu, J.-Y. (2010). Levan production using Bacillus subtilis natto cells immobilized on alginate. Carbohydrate Polymers, 82, 111–117.

    Article  CAS  Google Scholar 

  16. Calazans, G., Lima, C., França, F. P., & Lopes, C. E. (2000). Molecular weight and antitumour activity of Zymomonas mobilis levans. International Journal of Biological Macromolecules, 27, 245–247.

    Article  CAS  Google Scholar 

  17. Silva, P., Borsato, D., & Celligoi, M. A. P. C. (2014). High production of fructooligosaccharides by levansucrase from Bacillus subtilis natto CCT 7712. African Journal of Biotechnology, 13, 2734–2740.

    Article  Google Scholar 

  18. Berté, S. D., Borsato, D., Silva, P. B., Vignoli, J. A., & Celligoi, M. A. P. C. (2013). Statistical optimization of levansucrase production from Bacillus subtilis ATCC 6633 using response surface methodology. African Journal of Microbiology Research, 7, 898–904.

    Google Scholar 

  19. Somogyi, M. (1945). A new reagent for the determination of sugars. The Journal of Biological Chemistry, 160, 61–68.

    CAS  Google Scholar 

  20. Nelson, N. (1944). A photometric adaptation of the somogyi method for the determination of glucose. The Journal of Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  21. Ananthalakshmy, V. K., & Gunasekaran, P. (1999). Isolation and characterization of mutants from levan-producing Zymomonas mobilis. Journal of Bioscience and Bioengineering, 87, 214–217.

    Article  CAS  Google Scholar 

  22. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  23. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyl transferase from Aspergillus oryzae CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760.

    Article  Google Scholar 

  24. Bersaneti, G. T., Mantovan, J., Magri, A., Mali, S., & Celligoi, M. A. P. C. (2016). Edible films based on cassava starch and fructooligosaccharides produced by Bacillus subtilis natto CCT 7712. Carbohydrate Polymers, 151, 1132–1138.

    Article  CAS  Google Scholar 

  25. Viikari, L., & Gisler, R. (1986). By-products in the fermentation of sucrose by different Zymomonas strains. Applied Microbiology and Biotechnology, 23, 240–244.

    Article  CAS  Google Scholar 

  26. S R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing,Vienna, Austria, 2016. Available from: https://www.R-project.org/.

  27. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591.

    Article  Google Scholar 

  28. Breusch, T. S., & Pagan, A. R. (1979). A simple test for heteroscedasticity and random coefficient variation. Econometrica, 47, 1287–1294.

    Article  Google Scholar 

  29. Inthanavong, L., Tian, F., Khodadadi, M., & Karboune, S. (2013). Properties of Geobacillus stearothermophilus levansucrase as potential biocatalyst for the synthesis of levan and fructooligosaccharides. Biotechnology Progress, 29, 1405–1415.

    Article  CAS  Google Scholar 

  30. Abdel-Fattah, A. F., Mahmoud, D. a. R., & Esawy, M. a. T. (2005). Production of levansucrase from Bacillus subtilis NRC 33a and enzymic synthesis of levan and fructo-oligosaccharides. Current Microbiology, 51, 402–407.

    Article  CAS  Google Scholar 

  31. Belghith, K. S., Dahech, I., Belghith, H., & Mejdoub, H. (2012). Microbial production of levansucrase for synthesis of fructooligosaccharides and levan. International Journal of Biological Macromolecules, 50, 451–458.

    Article  CAS  Google Scholar 

  32. Silva, P. B., Borsato, D., & Celligoi, M. A. P. C. (2014). Optimization of high production of fructooligosacharides by sucrose fermentation of Bacillus subtilis natto CCT 7712. American Journal of Food Technology, 9, 144–150.

    Article  Google Scholar 

  33. Khandekar, D. C., Palai, T., Agarwal, A., & Bhattacharya, P. K. (2014). Kinetics of sucrose conversion to fructooligosaccharides using enzyme (invertase) under free condition. Bioprocess and Biosystems Engineering, 37, 2529–2537.

    Article  CAS  Google Scholar 

  34. Romano, N., Santos, M., Mobili, P., Vega, R., & Gómez-zavaglia, A. (2016). Effect of sucrose concentration on the composition of enzymatically synthesized short-chain fructooligosaccharides as determined by FTIR and multivariate analysis. Food Chemistry, 202, 467–475.

    Article  CAS  Google Scholar 

  35. Mehmood, A., Abdallah, K., Khandekar, S., Zhurina, D., Srivastava, A., Al-karablieh, N., Alfaro-espinoza, D., Pletzer, M. S., & Ullrich, M. S. (2015). Expression of extra-cellular levansucrase in Pseudomonas syringae is controlled by the in planta fitness-promoting metabolic repressor. HexR, BMC - Microbiology, 15, 1–11.

    Article  CAS  Google Scholar 

  36. Bakar, B., & Kaplan-Turkoz, B. (2017). Structural modelling and structure-function analysis of Zymomonas mobilis levansucrase. Journal of Natural and Applied Sciences, 21, 279–285.

    Google Scholar 

  37. Risso, F. V. A., Mazutti, M. A., Treichel, H., Costa, F., Maugeri, F., & Rodrigues, M. I. (2012). Comparison between systems for synthesis of fructooligosaccharides from sucrose using free inulinase from Kluyveromyces marxianus NRRL Y-7571. Food and Bioprocess Technology, 5, 331–337.

    Article  CAS  Google Scholar 

  38. Wu, F., Chou, S., & Shih, I. (2013). Factors affecting the production and molecular weight of levan of Bacillus subtilis natto in batch and fed-batch culture in fermenter. Journal of the Taiwan Institute of Chemical Engineers, 615, 01–08.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil) and the Araucaria Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonia Pedrine Colabone Celligoi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersaneti, G.T., Pan, N.C., Baldo, C. et al. Co-production of Fructooligosaccharides and Levan by Levansucrase from Bacillus subtilis natto with Potential Application in the Food Industry. Appl Biochem Biotechnol 184, 838–851 (2018). https://doi.org/10.1007/s12010-017-2587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2587-0

Keywords

Navigation