Skip to main content
Log in

Purification, Characterization of Amylase from Indigenously Isolated Aureobasidium pullulans Cau 19 and Its Bioconjugates with Gold Nanoparticles

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The amylase from Aureobasidium pullulans Cau 19 was purified by ammonium sulfate precipitation and Sephadex G-100 chromatography with a 9.25-fold increase in specific activity as compared to crude enzyme. Km and turn over values of the enzyme were 6.25 mg/mL and 5.0 × 102/min, respectively. Effect of different metal ions on the purified enzyme was investigated; 1 mM calcium (Ca) and cobalt (Co) enhanced enzyme activity by twofold; copper (Cu) had no effect on the activity of the enzyme. Mercury (Hg) 1 mM caused 90% inactivation whereas iron (Fe) and manganese (Mn) caused 10 to 16% inhibition. Amylase from A. pullulans Cau 19 was bioconjugated to gold nanoparticles synthesized using the biomass of A. pullulans Cau 19. Fourier transform infrared spectroscopy confirmed the conjugation of the enzyme to the gold nanoparticles. Though, only 20% of the added enzyme was adsorbed/conjugated on gold nanoparticles, 80% of the adsorbed activity could be estimated in the assay. The conjugated enzyme exhibited better tolerance to a broad pH range of 3.0–9.0 and higher temperatures compared with native enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, Z., Ding, Y., Li, S., Jiang, Y., Liu, Z., & Ge, J. (2016). Highly active, stable and self- antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale, 8, 17440–17445.

    Article  CAS  Google Scholar 

  2. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lorente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463.

    Article  CAS  Google Scholar 

  3. Wu, X., Hou, M., & Ge, J. (2015). Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science and Technology, 5, 5077–5085.

    Article  CAS  Google Scholar 

  4. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnology Advances, 30(3), 512–523.

    Article  CAS  Google Scholar 

  5. Aiyer, P. V. (2005). Amylase and their application. African Journal of Biotechnology, 4(13), 1525–1529.

    CAS  Google Scholar 

  6. Gupta, R., Gigras, P., Mahapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial α amylases: a biotechnological perspective. Process Biochemistry, 38(11), 1599–1616.

    Article  CAS  Google Scholar 

  7. Chi, Z. M., Liu, J., & Zhang, W. (2001). Trehalose accumulation from starch by Saccharomycopsis fibuligera sdu. Enzyme Microbial Technology, 28, 240–245.

    Article  CAS  Google Scholar 

  8. Gouda, M., & Elbahloul, Y. (2008). Statistical optimization and partial characterization of amylases produced by halotolerant Penicillium sp. World Journal of Agricultural Sciences, 4(3), 359–368.

    Google Scholar 

  9. Konsoula, Z., & Liakopoulou-Kyriakides, M. (2007). Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98, 150–157.

    Article  CAS  Google Scholar 

  10. Coronado, M. J., Vargas, C., Hofemeister, J., Ventosa, A., & Nieto, J. J. (2000). Production and biochemical characterization of an α amylase from the moderate halophile Halomonas meridiana. FEMS Microbiology Letters, 183(1), 67–71.

    CAS  Google Scholar 

  11. Kathiresan, K., & Manivannan, S. (2006). α amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. African Journal Biotechnology, 5, 829–832.

    CAS  Google Scholar 

  12. Goto, C. E., Barbosa, E. P., Kistner, L. C., Moreira, F. G., Lenartovicz, V., & Peralta, R. M. (1998). Production of amylase by Aspergillus fumigatus utilizing alpha-methyl-D-glycoside, a synthetic analogue of maltose, as substrate. FEMS Microbiology Letters, 167, 139–143.

    CAS  Google Scholar 

  13. Bin, G., Laisu, X., Youfang, D., & Yanquan, L. (1999). Screening of alpha amylase high-producing strains from Bacillus subtilis. Journal of Zhejiang, 23, 88–92.

    Google Scholar 

  14. Li, H., Chi, Z., Wang, X., Duan, X., Ma, L., & Gao, L. (2007). Purification and characterization of extracellular amylase from the marine yeast Aureobasidium pullulans N13d and its raw potato starch digestion. Enzyme and Microbial Technology, 40, 1006–1012.

    Article  CAS  Google Scholar 

  15. Miller, G. L. (1959). Use of dinitorsalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428 http://dx.doi.org/10.1021/ac60147a030.

    Article  CAS  Google Scholar 

  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    CAS  Google Scholar 

  17. Taylor, R. F. (1991). Immobilized antibody and receptor based biosensors. In R. F. Taylor (Ed.), Protein immobilization. Fundamentals and applications (pp. 263–303). New York, NY: Marcel Dekker.

    Google Scholar 

  18. Hmidet, N., Bayoudh, A., Berrin, J. G., Kanoun, S., Juge, N., & Nasri, M. (2008). Purification and biochemical characterization of a novel a-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Process Biochemistry, 43, 499–510.

    Article  CAS  Google Scholar 

  19. Shiva Jafarkhani. (2010). Bioconjugation of enzyme and nanoparticles with special reference to beta –xylanase of Aureobasidium pullulans. PhD thesis.

  20. Blanco, A., Vidal, T., Colom, J. F., & Javier Pastori, F. I. (1995). Purification and properties of xylanase from alkali-tolerant Bacillus sp. strain BP-23. Applied and Environmental Microbiology, 61(12), 4468–4470.

    CAS  Google Scholar 

  21. Mahmoud, S. A., Taha, S. M., & Attia, R. M. (1968). Effect of metal activators on the reaction velocity of bacterial alpha amylase. Journal of Botany, UAR., 11, 41–48.

    CAS  Google Scholar 

  22. Lo, H. F., Lin, L. L., Chen, H. L., Hsu, H. H., & Chang, C. T. (2001). Enzymatic properties of a SDS- resistance Bacillus sp. TS-23 α amylase produced by recombinant Escherichia coli. Process Biochemistry, 36, 743–750.

    Article  CAS  Google Scholar 

  23. Diaz, A., Sieiro, C., & Villa, T. G. (2003). Production and partial characterization of a β-amylase by Xanthophyllomyces dendrorhous. Letter in Applied Microbiology, 36, 203–207.

    Article  CAS  Google Scholar 

  24. Tatara, Y. T., Yoshida, T., & Ichishima, E. (2005). A single free cysteine residue and disulphide bond contribute to the thermostability of Aspergillus saitoi 1, 2-α-omannosidase. Bioscience, Biotechnology, Biochemistry, 69, 2101–2108.

    Article  CAS  Google Scholar 

  25. Noorbatcha, I. A., Zulkifli, S., & Salleh, M. H. (2014). Green synthesis of gold nanoparticles using Candida cylindracea. Journal of Pure and Applied Microbiology, 8, 881–884.

    Google Scholar 

  26. Skirtach, A. G., Dejugnat, C., Braun, D., Susha, A. S., Rogach, A. L., Parak, W. J., Mohwald, H., & Sukhorukov, G. B. (2005). The role of metal nanoparticles in remote release of encapsulated materials. Nano Letters, 5, 1371–1377.

    Article  CAS  Google Scholar 

  27. Martinez, J. C., Chequer, N. A., Gonzalez, J. L., & Cordova, T. (2012). Alternative methodology for gold nanoparticles diameter characterization using PCA technique and UV-Vis spectrophotometry. Nanoscience and Nanotechnology, 2(6), 184–189.

    Article  Google Scholar 

  28. Malarkodi, C., Rajeshkumar, S., Vanaja, M., Paulkumar, K., Gnanajobitha, G., & Annadurai, G. (2013). Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumonia. Journal of Nanostructure in Chemistry, 3, 30.

    Article  Google Scholar 

  29. Beveridge, T. J., & Murray, R. G. E. (1980). Site of metal desorption in the cell wall of Bacillus subtilis. Journal of Bacteriology, 141, 876–887.

    CAS  Google Scholar 

  30. Ahmad, A., Senapati, S., Khan, M. I., Kumar, R., & Sastry, M. (2003a). Extracellular biosynthesis of monodisperse gold nanoparticles by novel extremophilic actinomycetes, Thermomonaspora sp. Langmuir, 19, 3550–3553.

    Article  CAS  Google Scholar 

  31. Ahmad, A., Senapati, S., Khan, M. I., Ramani, R., Srinivas, V., & Sastry, M. (2003b). Intracellular synthesis of gold nanoparticles by novel alkalotolerant actinomycetes, Rhodococcus species. Nanotechnology, 14, 824–828.

    Article  CAS  Google Scholar 

  32. Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Sastry, M., & Kumar, R. (2004). Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian Journal of Physics, 78A, 101–105.

    CAS  Google Scholar 

  33. Bansal, V., Rautaray, D., Ahmad, A., & Sastry, M. (2004). Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. Journal of Materials Chemistry, 14, 3303–3305.

    Article  CAS  Google Scholar 

  34. Bansal, V., Sanyal, A., Rautaray, D., Ahmad, A., & Sastry, M. (2005). Bioleaching of sand by the fungus Fusarium oxysporum as a means of producing extracellular silica nanoparticles. Advanced Materials, 17, 889–892.

    Article  CAS  Google Scholar 

  35. Shankar, S. S., Ahmad, A., Pasrichaa, R., & Sastry, M. (2003). Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Journal of Materials Chemistry, 13, 1822–1826.

    Article  CAS  Google Scholar 

  36. Lyu, F., Zhang, Y., Zare, R. N., Ge, J., & Liu, Z. (2014). One-pot synthesis of protein embedded metal organic frameworks with enhanced biological activities. Nano, 14, 5761–5765.

    CAS  Google Scholar 

  37. Kumar, S., & Khare, S. K. (2012). Purification and characterization of maltooligosaccharide-forming α-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresource Technology, 116, 247–251.

  38. Zhu, J., Zhang, Y., Lu, D., Zare, R. N., Ge, J., & Liu, Z. (2013). Temperature responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media. Chemical communication, 49, 6090–6092.

    Article  CAS  Google Scholar 

  39. Li, Z., Zhang, Y., Su, Y., Ouyang, P., Ge, J., & Liu, Z. (2014). Spatial co-localization of multi-enzymes by inorganic nanocrystal- protein complexes. Chemical communication, 50, 12465–12468.

    Article  CAS  Google Scholar 

  40. Kim, J., & Grate, J. W. (2003). Single enzyme nanoparticles armored by a nanometer scale organic/inorganic network. Nano, 3, 1219–1222.

    CAS  Google Scholar 

  41. Khan, M. J., Husain, Q., & Ansari, S. A. (2013). Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Applied Microbiology and Biotechnology, 97(4), 1513–1522.

    Article  CAS  Google Scholar 

  42. Ahmad, R., & Sardar, M. (2015). Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochemistry and Analytical Biochemistry. doi:10.4172/2161-1009.1000178.

  43. Sasaki, Y. C., Yasuda, K., Suzuki, Y., Ishibashi, T., Satoh, I., Fuzuki, Y., & Ishiwata, S. (1997). Two dimensional arrangement of a functional protein by cysteine–gold interaction: enzyme activity and characterization of a protein monolayer on a gold substrate. Biophysical Journal, 72, 1842–1848.

    Article  CAS  Google Scholar 

  44. Jiang, Y., Guo, C., Xia, H., Mahmood, I., Liu, C., & Liu, H. (2009). Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. Journal of Molecular Catalysis. B: Enzymatic, 58, 103–109.

    Article  CAS  Google Scholar 

  45. Wang, P., Dai, S., Waezsada, S. D., Tsao, A. Y., & Davison, B. H. (2001). Enzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis. Biotechnology and Bioengineering, 74, 249–255.

    Article  CAS  Google Scholar 

  46. Sadhukhan, R., Roy, S. K., & Chakrabarty, S. L. (1993). Immobilization of alpha–amylase from Myceliphthora thermophila D-14 (ATCC 48104). Enzyme Microbial Technology, 15, 801–804.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the BCUD, Savitribai Phule Pune University, Pune 411007, for providing funds. YM is thankful to the Department of Microbiology, Tuljaram Chaturchand College, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.L. Deopurkar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulay, Y., Deopurkar, R. Purification, Characterization of Amylase from Indigenously Isolated Aureobasidium pullulans Cau 19 and Its Bioconjugates with Gold Nanoparticles. Appl Biochem Biotechnol 184, 644–658 (2018). https://doi.org/10.1007/s12010-017-2575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2575-4

Keywords

Navigation