Skip to main content
Log in

Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Liquid hot water (LHW) pretreatment is an efficient chemical-free strategy for enhancing enzymatic digestibility of lignocellulosic biomass for conversion to fuels and chemicals in biorefinery. In this study, effects of LHW on removals of hemicelluloses and lignin from corncobs were studied under varying reaction conditions. LHW pretreatment at 160 °C for 10 min promoted the highest levels of hemicellulose solubilization into the liquid phase, resulting into the maximized pentose yield of 58.8% in the liquid and more than 60% removal of lignin from the solid, with 73.1% glucose recovery from enzymatic hydrolysis of the pretreated biomass using 10 FPU/g Celluclast™. This led to the maximal glucose and pentose recoveries of 81.9 and 71.2%, respectively, when combining sugars from the liquid phase from LHW and hydrolysis of the solid. Scanning electron microscopy revealed disruption of the intact biomass structure allowing increasing enzyme’s accessibility to the cellulose microfibers which showed higher crystallinity index compared to the native biomass as shown by x-ray diffraction with a marked increase in surface area as revealed by BET measurement. The work provides an insight into effects of LHW on modification of physicochemical properties of corncobs and an efficient approach for its processing in biorefinery industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J., & Castro, E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 41(2), 423–429.

    Article  CAS  Google Scholar 

  2. Marsran, R., Zanirun, Z., Bahrin, E. K., Ibrahim, M. F., Yee, P. L., & Abd-Aziz, S. (2016). Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment. Applied Microbiology and Biotechnology, 100(12), 5231–5246.

    Article  Google Scholar 

  3. Sharma, A., Tewar, R., Rana, S. S., Sono, R., & Soni, S. K. (2016). Cellulases: classification, methods of determination and industrial applications. Applied Biochemistry and Biotechnology, 179(8), 1346–1380.

    Article  CAS  Google Scholar 

  4. Rabemanolontsoa, H. (2016). Various pretreatments of lignocellulosics. Bioresource Technology, 199, 83–91.

    Article  CAS  Google Scholar 

  5. Hendricks, A. T. W. M., & Zeema, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–28.

    Article  Google Scholar 

  6. Yuksel, A. (2013). Hydrothermal degradation of Congo red in hot compressed water and its kinetics. Chemical Engineering and Processing, 4(9), 1–9.

    Google Scholar 

  7. Plaza, M., & Turner, C. (2015). Pressurized hot water extraction of bioactives. Trends in Analytical Chemistry, 71, 39–54.

    Article  CAS  Google Scholar 

  8. Imman, S., Arnthong, J., Burapatana, V., Laosiripojana, N., & Champreda, V. (2014). Influence of alkaline catalyst addition on compressed liquid hot water pretreatment of rice straw. Chemical Engineering Journal, 278, 85–91.

    Article  Google Scholar 

  9. Imman, S., Arnthong, J., Burapatana, V., Laosiripojana, N., & Champreda, V. (2015). Effects of acid and alkali promoters on compressed liquid hot water pretreatment of rice straw. Bioresource Technology, 171, 29–36.

    Article  Google Scholar 

  10. Wanitwattanarumlug, B., Luengnaruemitchai, A., & Wongkasemjit, S. (2012). Characterization of corn cobs from microwave and potassium hydroxide pretreatment. International Journal of Innovative Research in Science Engineering, 6(4), 327–331.

    Google Scholar 

  11. Sahare, P., Singh, R., Laxman, R. S., & Rao, M. (2012). Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob. Applied Biochemistry and Biotechnology, 168(7), 1806–1819.

    Article  CAS  Google Scholar 

  12. Bu, L., Xing, Y., Yu, H., Gao, Y., & Jiang, J. (2012). Comparative study of sulfite pretreatment for robust enzymatic saccharification of corn cob residue. Biotechnology for Biofuels, 5(87), 2–8.

    Google Scholar 

  13. Zhang, X., Yuan, Q., & Cheng, G. (2017). Deconstruction of corncob by steam explosion pretreatment: correlations between sugar conversion and recalcitrant structures. Carbohydrate Polymers, 156, 351–356.

    Article  CAS  Google Scholar 

  14. Liu, Y., Luo, P., Xu, Q., Wang, E., & Yin, J. (2012). Investigation of the effect of supercritical carbon dioxide pretreatment on reducing sugar yield of lignocellulose hydrolysis. Cellulose Chemistry and Technology, 48(1–2), 89–95.

    Google Scholar 

  15. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2004). Laboratory Analytical Procedure (LAP). Denver: The National Renewable Energy Laboratory (NREL).

    Google Scholar 

  16. Adney, B., & Baker, J. (1996). Measurement of cellulase activities, chemical analysis and testing task. In Laboratory Analytical procedure LAP-006. Denver: The National Renewable Energy Laboraory (NREL).

    Google Scholar 

  17. Ruiz, H. A., Silva, D. P., Ruzene, D. S., Lima, L. F., Vicente, A. A., & Teixeira, J. A. (2012). Bioethanol production from thermal pretreated wheat straw by a flocculating Saccharomyces cerevisiae strain—effect of process conditions. Fuel, 95, 528–536.

    Article  CAS  Google Scholar 

  18. Wan, C., & Li, Y. (2011). Effectiveness of microbial pretreatment by Ceriporiopsis subvermispora on different biomass feedstocks. Bioresource Technology, 102(16), 7507–75123.

    Article  CAS  Google Scholar 

  19. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumara, R. J., & Pandey, A. (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102(23), 10915–10921.

    Article  CAS  Google Scholar 

  20. Kim, Y., Ximenes, N. S., & Ladisch, M. R. (2011). Soluble inhibitors/deactivators of cellulose enzymes from lignocellulosic biomass. Enzyme and Microbial Technology, 48(4–5), 408–415.

    Article  CAS  Google Scholar 

  21. Yu, Q., Zhuang, X., Yuan, Z., Wang, Q., Qi, W., Wang, Q., & Tan, X. (2011). Step-change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugars recovery. Applied Energy, 88(7), 2472–2479.

    Article  CAS  Google Scholar 

  22. Zhuang, X., Yu, Q., Wang, W., Qi, W., Wang, Q., Tan, X., & Yuan, Z. (2012). Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water. Applied Biochemistry and Biotechnology, 168(1), 206–218.

    Article  CAS  Google Scholar 

  23. Sanchez, B., & Bautista, J. (1988). Effect of furfural and 5-hydroxymethylfurfural on the fermentation on saccharomyces cervisiae and biomass products Candida guilliermondii. Enzyme and Microbial Technology, 10, 315–318.

    Article  CAS  Google Scholar 

  24. Zeng, M., Mosier, N. S., Huang, C. P., Sherman, D. M., & Ladisch, M. R. (2007). Microsopic examination of changes of plant cell in corn stover due to hot water pretreatment and enzymatic hydrolysis. Biotechnology and Bioengineering, 97(2), 265–278.

    Article  CAS  Google Scholar 

  25. Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., & Sawayama, S. (2010). Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 160, 539–551.

    Article  CAS  Google Scholar 

  26. Imman, S., Arnthong, J., Burapatana, V., Laosiripojana, N., & Champreda, V. (2013). Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment. Applied Biochemistry and Biotechnology, 170(8), 1982–1995.

    Article  CAS  Google Scholar 

  27. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, 90(1), 39–47.

    Article  CAS  Google Scholar 

  28. Cheng, K. K., Wang, W., Zhang, J. A., Zhao, Q., Li, J. P., & Xue, J. W. (2011). Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresource Technology, 102, 3014–3019.

    Article  CAS  Google Scholar 

  29. Cai, B. Y., Ge, J. P., Ling, H. Z., Cheng, K. K., & Pin, W. X. (2012). Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production. Biomass & Bioenergy, 36, 250–257.

    Article  CAS  Google Scholar 

  30. Satimanont, S., Luengnaruemitchai, A., & Wongkasemjit, S. (2012). Effect of temperature and time on dilute acid pretreatment of corn cobs. International journal of chemical, molecular, Nuclear. Materials and Metallurgical Engineering, 6(4), 316–320.

    Google Scholar 

  31. Guo, X., Zhang, T., Shu, S., Zheng, W., & Gao, M. (2017). Compositional and structural changes of corn cob pretreated by electron beam irradiation. Sustainable Chemistry and Engineering., 5, 420–425.

    Article  CAS  Google Scholar 

  32. Procentese, A., Johnson, E., Or, V., Campanile, A. G., Wood, A. J., Marzocchella, A., & Rehmann, L. (2016). Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresource Technology, 192, 31–36.

    Article  Google Scholar 

  33. Alvira, P., Tomas-Pejo, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101(13), 4851–4861.

    Article  CAS  Google Scholar 

  34. Li, H., Chen, X., Ren, J., Deng, H., Peng, F., & Sun, R. (2015). Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment. Biotechnology for Biofuels, 8, 127. doi:10.1186/s13068-015-0314-z.

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by research grants from the Thailand Research Fund and the Office of the Higher Education Commission (MRG6080162). N.L. was supported by a research grant (RTA 598006) from the Thailand Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saksit Imman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imman, S., Laosiripojana, N. & Champreda, V. Effects of Liquid Hot Water Pretreatment on Enzymatic Hydrolysis and Physicochemical Changes of Corncobs. Appl Biochem Biotechnol 184, 432–443 (2018). https://doi.org/10.1007/s12010-017-2541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2541-1

Keywords

Navigation