Skip to main content
Log in

Microbial Catalyzed Regio-Selective Demethylation of Colchicine by Streptomyces griseus ATCC 13273

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colchicinoids and their derivatives are of great importance in pharmaceutical applications, and colchicine is usually used as the first choice for the treatment of gout. To expand the structural diversities and clinical application of colchicinoids, many attempts have been established for the derivatives with better activity or less toxicity. Herein, in this paper, we report a direct microbial transformation of colchicine into 2-O-demethyl-colchicine (M1) and 3-O-demethl-colchicine (M2) by Streptomyces griseus ATCC 13273. It is noteworthy that when DMF was used as co-solvent, the yield of M1 and M2 could reach up to 51 and 31%, respectively. All the structures of the metabolites were elucidated unambiguously by ESI-MS, 1H–NMR, 13C–NMR, and 2D–NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Jason Raj, J. S. G. R., & Sankar, M. (2014). Quantification of colchicine in various parts of Gloriosa superba by HPLC. Journal of Chemical and Pharmaceutical Sciences, 2, 53–55.

    Google Scholar 

  2. Slobodnick, A., Shah, B., Pillinger, M. H., & Krasnokutsky, S. (2015). Colchicine: old and new. The American Journal of Medicine, 128(5), 461–470.

    Article  CAS  Google Scholar 

  3. Ponzone, C., Berlanda, D., Donzelli, F., Acquati, V., Ciulla, R., Negrini, A., Rovati, M., Evangelista, D., Fata, E., & Ciceri, D. (2014). Biotransformation of Colchicinoids into their corresponding 3-O-Glucosyl derivatives by selected strains of Bacillus megaterium. Molecular Biotechnology, 56(7), 653–659.

    Article  CAS  Google Scholar 

  4. Dubey, K. K., & Behera, B. K. (2011). Statistical optimization of process variables for the production of an anticancer drug (colchicine derivatives) through fermentation: at scale-up level. New Biotechnology, 28(1), 79–85.

    Article  CAS  Google Scholar 

  5. Brossi, A., Yeh, H. J., Chrzanowska, M., Wolff, J., Hamel, E., Lin, C. M., Quin, F., Suffness, M., & Silverton, J. (1988). Colchicine and its analogues: recent findings. Medicinal Research Reviews, 8(1), 77–94.

    Article  CAS  Google Scholar 

  6. Goldfinger, S. E. (1972). Colchicine for familial Mediterranean fever. The New England Journal of Medicine, 287(25), 1302–1302.

    CAS  Google Scholar 

  7. Abodunde, O. A., Levaka Veera, R. R., Desai, R., Nweke, N., & Berrou, M. (2013). Colchicine toxicity precipitated by interaction with sunitinib. Journal of Clinical Pharmacy and Therapeutics, 38(3), 243–245.

    Article  CAS  Google Scholar 

  8. Finkelstein, Y., Aks, S. E., Hutson, J. R., Juurlink, D. N., Nguyen, P., Dubnov-Raz, G., Pollak, U., Koren, G., & Bentur, Y. (2010). Colchicine poisoning: the dark side of an ancient drug. Clinical Toxicology, 48(5), 407–414.

    Article  CAS  Google Scholar 

  9. Charles, D., Hufford, C. C. C., & Clark, A. M. (1979). Microbial transformations and I3C-NMR analysis of colchicine. J Pharm Sci-Us, 68(10), 3.

    Google Scholar 

  10. UCLAF R 1956: Colchicine derivatives. In.

  11. Solet, J.-M., Bister-Miel, F., Galons, H., Spagnoli, R., Guignard, J.-L., & Cosson, L. (1993). Glucosylation of thiocolchicine by a cell suspension culture of Centella asiatica. Phytochemistry, 33(4), 817–820.

    Article  CAS  Google Scholar 

  12. de Carvalho, C. (2011). Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances, 29(1), 75–83.

    Article  Google Scholar 

  13. Ge, H.-X., Zhang, J., Kai, C., Liu, J.-H., & Yu, B.-Y. (2012). Regio-and enantio-selective glycosylation of tetrahydroprotoberberines by Gliocladium deliquescens NRRL1086 resulting in unique alkaloidal glycosides. Applied Microbiology and Biotechnology, 93(6), 2357–2364.

    Article  CAS  Google Scholar 

  14. Liu, J.-H., Chen, Y.-G., Yu, B.-Y., & Chen, Y.-J. (2006). A novel ketone derivative of artemisinin biotransformed by Streptomyces Griseus ATCC 13273. Bioorganic & Medicinal Chemistry Letters, 16(7), 1909–1912.

    Article  CAS  Google Scholar 

  15. Zhu, Y.-Y., Qian, L.-W., Zhang, J., Liu, J.-H., & Yu, B.-Y. (2011). New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation. Tetrahedron, 67(23), 4206–4211.

    Article  CAS  Google Scholar 

  16. Qian, L.-W., Zhang, J., Liu, J.-H., & Yu, B.-Y. (2009). Direct microbial-catalyzed asymmetric α-hydroxylation of betulonic acid by Nocardia sp. NRRL 5646. Tetrahedron Letters, 50(19), 2193–2195.

    Article  CAS  Google Scholar 

  17. Ponzone, C., Berlanda, D., Donzelli, F., Acquati, V., Ciulla, R., Negrini, A., Rovati, M., Evangelista, D., Fata, E., Ciceri, D., et al. (2014). Biotransformation of colchicinoids into their corresponding 3-O-glucosyl derivatives by selected strains of Bacillus megaterium. Molecular Biotechnology, 56(7), 653–659.

    Article  CAS  Google Scholar 

  18. Hufford, C. D., Collins, C. C., & Clark, A. M. (1979). Microbial transformations and 13C-NMR analysis of colchicine. Journal of Pharmaceutical Sciences, 68(10), 1239–1243.

    Article  CAS  Google Scholar 

  19. Chang, Y. (1975). Mechanism of action of colchicine. I. Effect of colchicine and its analogs on the reversed passive Arthus reaction and the carrageenan-induced hindpaw edema in the rat. The Journal of Pharmacology and Experimental Therapeutics, 194, 154–158.

    CAS  Google Scholar 

  20. Chang, Y. (1975). Mechanism of action of colchicine. II. Effect of colchicine and its analogs on the reversed passive Arthus reaction and the carrageenan-induced hindpaw edema in the rat. The Journal of Pharmacology and Experimental Therapeutics, 194, 159–164.

    CAS  Google Scholar 

  21. Poulev, A., Bombardelli, E., Ponzone, C., & Zenk, M. H. (1995). Regioselective bioconversion of colchicine and thiocolchicine into their corresponding 3-demethyl derivatives. Journal of Fermentation and Bioengineering, 79(1), 33–38.

    Article  CAS  Google Scholar 

  22. Urlacher, V. B., Lutz-Wahl, S., & Schmid, R. D. (2004). Microbial P450 enzymes in biotechnology. Applied Microbiology and Biotechnology, 64(3), 317–325.

    Article  CAS  Google Scholar 

  23. Munro, A. W., Girvan, H. M., & McLean, K. J. (2007). Cytochrome P450—redox partner fusion enzymes. Biochimica et Biophysica Acta, 1770(3), 345–359.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in University. Thanks also given to the “111 Project” from the Ministry of Education of China, the Fundamental Research Funds for the Central Universities (JKZ2011017), and the scientific and innovation research of college graduate in Jangsu province (CXLX11_0788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Sun, X., Xu, S.H. et al. Microbial Catalyzed Regio-Selective Demethylation of Colchicine by Streptomyces griseus ATCC 13273. Appl Biochem Biotechnol 183, 1026–1034 (2017). https://doi.org/10.1007/s12010-017-2480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2480-x

Keywords

Navigation