Skip to main content
Log in

Effects of Low Moisture Anhydrous Ammonia (LMAA) Pretreatment at Controlled Ammoniation Temperatures on Enzymatic Hydrolysis of Corn Stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover was treated using low-moisture anhydrous ammonia (LMAA) at controlled ammoniation temperature. Moisturized corn stover (50 % moisture) was contacted with anhydrous ammonia (0.1 g NH3/g-biomass) in a batch reactor at various temperatures (ambient to 150 °C). After ammoniation at elevated and controlled temperature, ammoniated corn stover was pretreated at various temperatures (60–150 °C) for 72–144 h. Change in composition was marginal at low pretreatment temperature but was relatively severe with pretreatment at high temperature (130–150 °C). The latter resulted in low enzymatic digestibility. It was also observed that extreme levels (either high or low) of residual ammonia affected enzymatic digestibility, while residual ammonia improved by 1.0–1.5 %. The LMAA method enhanced enzymatic digestibility compared to untreated corn stover (29.8 %). The highest glucan and xylan digestibility (84.1 and 73.6 %, respectively) was obtained under the optimal LMAA conditions (i.e., ammoniation at 70 °C for 20 min, followed by pretreatment at 90 °C for 48 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Naylor, R. L., Liska, A. J., Burke, M. B., Falcon, W. P., Gaskell, J. C., Rozelle, S. D., & Cassman, K. G. (2007). The ripple effect: biofuels, food security, and the environment. Environment: Science and Policy for Sustainable Development, 49(9), 30–43.

    Article  Google Scholar 

  2. Zilberman, D., Hochman, G., Rajagopal, D., Sexton, S., & Timilsina, G. (2013). The impact of biofuels on commodity food prices: assessment of findings. America Journal Agricultural Economics, 95(2), 275–281.

    Article  Google Scholar 

  3. Zhao, L., Chang, S., Wang, H., Zhang, X., Ou, X., Wang, B., & Wu, M. (2015). Long-term projections of liquid biofuels in China: uncertainties and potential benefits. Energy, 83, 37–54.

    Article  Google Scholar 

  4. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  5. Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J. B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R., & Lynd, L. R. (2007). Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnology and Bioengineering, 97(2), 214–223.

    Article  CAS  Google Scholar 

  6. Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100, 10–18.

    Article  CAS  Google Scholar 

  7. Yoo, C. G., Nghiem, N. P., Hicks, K. B., & Kim, T. H. (2011). Pretreatment of corn Stover using low-moisture anhydrous ammonia (LMAA) process. Bioresource Technology, 102(21), 10028–10034.

    Article  CAS  Google Scholar 

  8. Kim, T. H. (2013). Chapter in book: 6. Pretreatment of lignocellulosic biomass. In S. T. Yang, H. A. El-Enshasy, & N. Thongchul (Eds.), Bioprocessing technologies in biorefinery for sustainable production of fuels (pp. 91–1110). N.Y., USA: Wiley.

    Chapter  Google Scholar 

  9. Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technology, 96(18), 2007–2013.

    Article  CAS  Google Scholar 

  10. Kim, T. H., Kim, J. S., Sunwoo, C., & Lee, Y. Y. (2003). Pretreatment of corn stover by aqueous ammonia. Bioresource Technology, 90(1), 39–47.

    Article  CAS  Google Scholar 

  11. Kim, T. H., & Lee, Y. Y. (2007). Pretreatment of corn stover by soaking in aqueous ammonia at moderate temperatures. Applied Biochemistry and Biotechnology, 137-140(1–12), 81–92.

    CAS  Google Scholar 

  12. NREL (National Renewable Energy Laboratory) in Golden, CO. (2008). LAP (Laboratory Analytical Procedure). Accessed 29 Feb 2016 http://www.nrel.gov/biomass/analytical_procedures.html.

  13. Chen, W. H., & Kuo, P. C. (2011). Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 36(2), 803–811.

    Article  CAS  Google Scholar 

  14. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20(3), 848–889.

    Article  CAS  Google Scholar 

  15. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

  16. Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94, 611–617.

    Article  CAS  Google Scholar 

  17. Rahikainen, J. L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O. J., & Kruus, K. (2013). Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270–278.

    Article  CAS  Google Scholar 

  18. Lancaster, E. B., Hall, G. E., & Brekke, O. L. (1974). Treating corn with ammonia—behavior of the corn-water-ammonia system. T. ASAE, 17(2), 331–0334.

    Article  CAS  Google Scholar 

  19. Eberhart, B. M., Beek, R. S., & Goolsby, K. M. (1977). Cellulose of Neurospora crassa. Journal of Microbiology, 130, 181–186.

    CAS  Google Scholar 

  20. Menon, K., Rao, K. K., & Pushalkar, S. (1994). Production of β-glucosidase by Penicillium rubrum O stall. Indian Journal of Experimental Biology, 32, 706–709.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the R&D program (No. 20153010091990) and Human Resources Development program (No. 20134030200230) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy (MOTIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cayetano, R.D.A., Kim, T.H. Effects of Low Moisture Anhydrous Ammonia (LMAA) Pretreatment at Controlled Ammoniation Temperatures on Enzymatic Hydrolysis of Corn Stover. Appl Biochem Biotechnol 181, 1257–1269 (2017). https://doi.org/10.1007/s12010-016-2282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2282-6

Keywords

Navigation