Skip to main content
Log in

Exhaustive Study of the Novel Hyper Alkalophil, Thermostable, and Chelator Resistant Metalloprotease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Our newly discovered metalloprotease, designated as ALP NS12 was selected using gelatin agar plates with incubation at 100 °C. Subcloning of the fragments in to pUC118 to make E. coli HB101 (pPEMP01NS) with following two-step chromatography using diethylaminoethyl sepharose (DEAE-sepharose) and Sephadex G-100 columns to purify 97-kDa expressed enzyme was performed. Although activity of immobilized ALP NS12 on glass surface was established at temperatures between 70 and 120 °C and pH ranges 4.0–13.0, the optimum temperature and pH were achieved at 100 °C and 11.0, respectively. Enhancement of enzyme activity was obtained in the presence of 5 mM MnCl2 (91 %), CaCl2 (357 %), FeCl2 (175 %), MgCl2 (94 %), ZnCl2 (412 %), NiCl (86 %), NaCl (239 %), and Na-sulfate (81 %) while inhibition was observed with EDTA (5 mM), PMSF (3 mM), urea (8 M), and SDS (1 %) at 65, 37, 33, and 42 %, respectively. Consequently, the enzyme was well analyzed using crystallography and protein modeling. ALP NS12 can be applied in industrial processes at extreme temperatures and under highly basic conditions, chelators, and detergents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anwar, A., & Saleemuddin, M. (1998). Bioresource Technology, 64, 175–183.

    Article  CAS  Google Scholar 

  2. Burhan, A., Nisa, U., Gökhan, C., Ömer, C., Ashabil, A., & Osman, G. (2003). Process Biochemistry, 38, 1397–1403.

    Article  CAS  Google Scholar 

  3. Horikoshi, K. (1999). Microbiology and Molecular Biology Reviews, 63, 735–750.

    CAS  Google Scholar 

  4. Nima, S., Kambiz, A. N., Zahra, G., Hossien, S. Z., Gholamreza, A., Hakimeh, S., Reza, B., & Hojatollah, V. (2012). Process Biochemistry, 47, 1381–1387.

    Article  Google Scholar 

  5. Nima, S., Padma, R. M. R., & Masoumeh, A. (2012). Starch/Starke, 64, 136–144.

    Article  Google Scholar 

  6. Kanekar, P. P., Nilegaonkar, S. S., Sarnaik, S. S., & Kelkar, A. S. (2002). Bioresource Technology, 85, 87–93.

    Article  CAS  Google Scholar 

  7. Setyorini, E., Kim, Y.-J., Takenaka, S., Murakami, S., & Aoki, K. (2006). Journal of Basic Microbiology, 46, 294–304.

    Article  CAS  Google Scholar 

  8. Kumari, D., Sharma, N., Pandove, G., & Achal, V. (2009). Life Science Journal, 6, 8–10.

    Google Scholar 

  9. Gupta, M. N., Jain, S., & Roy, I. (2002). Biotechnology Progress, 18, 78–81.

    Article  CAS  Google Scholar 

  10. Najafi, M. F., Deobagkar, D., & Deobagkar, D. (2005). Electronic Journal of Biotechnology, 8, 79–85.

    Article  Google Scholar 

  11. Genckal, H., & Tari, C. (2006). Enzyme and Microbial Technology, 39, 703–710.

    Article  CAS  Google Scholar 

  12. Silva, C. J. S. M., Zhang, Q., Shen, J., & Cavaco-Paulo, A. (2006). Enzyme and Microbial Technology, 39, 634–640.

    Article  CAS  Google Scholar 

  13. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Microbiology and Molecular Biology Reviews, 62, 597–635.

    CAS  Google Scholar 

  14. Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O'Kane, C. J., & Rubinsztein, D. C. (2004). Nature Genetics, 36, 585–595.

    Article  CAS  Google Scholar 

  15. Bhaskar, N., Sudeepa, E. S., Rashmi, H. N., & Tamil Selvi, A. (2007). Bioresource Technology, 98, 2758–2764.

    Article  CAS  Google Scholar 

  16. Doddapaneni, K. K., Tatineni, R., Vellanki, R. N., Gandu, B., Panyala, N. R., Chakali, B., & Mangamoori, L. N. (2007). Process Biochemistry, 42, 1229–1236.

    Article  CAS  Google Scholar 

  17. Padmapriya, B., Rajeswari, T., Nandita, R., & Raj, F. (2012). European Journal of Applied Sciences, 4, 21–26.

    Google Scholar 

  18. Haddar, A., Agrebi, R., Bougatef, A., Hmidet, N., Sellami-Kamoun, A., & Nasri, M. (2009). Bioresource Technology, 100, 3366–3373.

    Article  CAS  Google Scholar 

  19. Sellami-Kamoun, A., Haddar, A., Ali, N. E.-H., Ghorbel-Frikha, B., Kanoun, S., & Nasri, M. (2008). Microbiological Research, 163, 299–306.

    Article  CAS  Google Scholar 

  20. Adinarayana, K., Ellaiah, P., & Prasad, D. (2003). AAPS PharmSci Tech, 4, 440–448.

    Article  Google Scholar 

  21. Kumar, C. G. (2002). Letters in Applied Microbiology, 34, 13–17.

    Article  CAS  Google Scholar 

  22. Garrity, G.M., Bell, J.A., & Lilburn, T.G. (2004). Taxonomic outline of prokaryotes Bergey’s manual of systematic bacteriology, second edition.

  23. Coon, J. J. (2009). Analytical Chemistry, 81, 3208–3215.

    Article  CAS  Google Scholar 

  24. Egas, M. C. V., da Costa, M. S., Cowan, D. A., & Pires, E. M. V. (1998). Extremophiles, 2, 23–32.

    Article  CAS  Google Scholar 

  25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Journal of Molecular Biology, 215, 403–410.

    Article  CAS  Google Scholar 

  26. Kalpana Devi, M., Rasheedha Banu, A., Gnanaprabha, G. R., Pradeep, B. V., & Palaniswamy, M. (2008). Indian Journal of Science and Technology, 7, 1–6.

    Google Scholar 

  27. Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  28. Liu, Y. H., Lu, F. P., Li, Y., Yin, X. B., Wang, Y., & Gao, C. (2008). Appl Microbiology and Biotechnology, 78, 85–94.

    Article  CAS  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  30. Russell, A. J., Drevon, G. F., Wicks, D. & Danielmeier, K. (2005). US Patents 6905733 B2

  31. Nakanishi, T., Matsumura, Y., Minamura, N., & Yamamoto, T. (1974). Agricultural and Biological Chemistry, 38, 37–44.

    CAS  Google Scholar 

  32. Feller, G., Narinx, E., Arpigny, J. L., Aittaleb, M., Baise, E., Genicot, S., & Gerday, C. (1996). FEMS Microbiology Reviews, 18, 189–202.

    Article  CAS  Google Scholar 

  33. Lo, H. F., Lin, L. L., Chen, H. L., Hsu, W. H., & Chang, C. T. (2001). Process Biochemistry, 36, 743–750.

    Article  CAS  Google Scholar 

  34. Ehrenreich, H., Hasselblatt, M., Dembowski, C., Cepek, L., Lewczuk, P., Stiefel, M., Rustenbeck, H., Breiter, N., Jacob, S., Knerlich, F., Bohn, M., Poser, W., Rüther, E., Kochen, M., Gefeller, O., Gleiter, C., Wessel, T. C., Ryck, M. D., Itri, L., Pranged, H., Cerami, A., Brines, M., & Siren, A. L. (2002). Molecular Medicine, 8, 495–505.

    CAS  Google Scholar 

  35. Wang, B. C. (1985). Methods in Enzymology, 115, 90–112.

    Article  CAS  Google Scholar 

  36. Youssef, N., Sheik, C. S., Krumholz, L. R., Najar, F. Z., Roe, B. A., & Elshahed, M. S. (2009). Applied and Environmental Microbiology, 75, 5227–5236.

    Article  CAS  Google Scholar 

  37. Turk, D. (1992). Ph.D. Thesis, TechnischeUniversitatMunchen

  38. Jones, T. A., Zou, J.-Y., Cowan, S. W., & Kjeldgaard, M. (1991). Acta Crystallographica Section A, 47, 110–119.

    Google Scholar 

  39. Tanksale, A., Chandra, P. M., Rao, M., & Deshpande, V. (2001). Biotechnology Letters, 23, 51–54.

    Article  CAS  Google Scholar 

  40. Jones, T. A., & Thirup, S. (1986). EMBO J, 5, 819–822.

    CAS  Google Scholar 

  41. Brunger, A. T., Kuriyan, J., & Karplus, M. (1987). Science, 235, 458–460.

    Article  CAS  Google Scholar 

  42. Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1985). Nature, 318, 618–624.

    Article  CAS  Google Scholar 

  43. Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K., & Rosenfeld, M. G. (1995). Nature, 377, 397–404.

    Article  CAS  Google Scholar 

  44. Tigue, M. A. M., Kelly, C. T., Doyle, E. M., & Fogarty, W. M. (1995). Enzyme and Microbial Technology, 17, 570–573.

    Article  Google Scholar 

  45. Ankaralingam, S., Shankar, T., Ramasubburayan, R., Prakash, S., & Kumar, C. (2012). American-Eurasian Journal of Agriculture and Environmental Science, 2, 1507–1513.

    Google Scholar 

  46. Gupta, A., Roy, I., Patel, R. K., Singh, S. P., Khare, S. K., & Gupta, M. N. (2005). Journal of Chromatography A, 1075, 103–108.

    Article  CAS  Google Scholar 

  47. Rahman, R. N. Z. R. A., Geok, L. P., Basri, M., & Salleh, A. B. (2006). Enzyme and Microbial Technology, 39, 1484–1491.

    Article  Google Scholar 

  48. Patil, U., & Chaudhari, A. (2011). Indian Journal of Biotechnology, 10, 329–339.

    CAS  Google Scholar 

  49. Asoodeh, A., Mohammadian, H., & Musaabadi, A. (2012). Iranian Journal of Biotechnology, 10, 23–28.

    Google Scholar 

  50. Smith, M., & Zahnley, J. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 277–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

With special thanks to Nooshin Mohebali, Alex Thompson and Zahra Ghasemzadeh who helped us a lot in current research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Samie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samie, N., Haerian, B., Muniandy, S. et al. Exhaustive Study of the Novel Hyper Alkalophil, Thermostable, and Chelator Resistant Metalloprotease. Appl Biochem Biotechnol 175, 3397–3417 (2015). https://doi.org/10.1007/s12010-015-1513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1513-6

Keywords

Navigation