Skip to main content
Log in

Purification and Characterization of a Thermostable Hypothetical Xylanase from Aspergillus oryzae HML366

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the current study, fermentation broth of Aspergillus oryzae HML366 in sugar cane bagasse was subjected to ultrafiltration and ion exchange chromatography, and two xylanases, XynH1 and XynH2, were purified. Time-of-flight mass spectrometry coupled with SDS-PAGE analysis revealed that XynH1 is identical to the hypothetical A. oryzae RIB40 protein XP_001826985.1, with a molecular weight of 33.671 kDa. Likewise, XynH2 was identified as xylanase XynF1 with a molecular weight of 35.402 kDa. Sequence analysis indicated that XynH1 belongs to glycosyl hydrolases family 10. The specific activity of XynH1 was measured at 476.9 U/mg. Optimal xylanase activity was observed at pH 6.0, and enzyme remained active within pH 4.0–10.0 and at a temperature below 70 °C. Mg2+, Mn2+, Ca2+, and K+ enhanced the XynH1 xylanase activity to 146, 122, 114, and 108 %, respectively. XynH1 hydrolyzed Birchwood xylan and Larchwood xylan effectively. The K m and V max of XynH1 values determined were 1.16 mM and 336 μmol/min/mg with Birchwood xylan as the substrate. A. oryzae HML366 xylanase XynH1 showed superior heat and pH tolerance, therefore may have significant applications in paper and biofuel industries. These studies constitute the first investigation of the xylanase activities of the hypothetical protein XP_001826985.1 form A. oryzae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bastawde, K. B. (1992). World Journal of Microbiology and Biotechnology, 8, 353–368.

    Article  CAS  Google Scholar 

  2. Boucherba, N., Gagaoua, M., Copinet, E., Bettache, A., Duchiron, F., & Benallaoua, S. (2014). Applied Biochemistry and Biotechnology, 172(5), 2694–2705.

    Article  CAS  Google Scholar 

  3. Poosarla, V. G., & Chandra, T. S. (2014). Applied Biochemistry and Biotechnology, 173(6), 1375–1390.

    Article  CAS  Google Scholar 

  4. Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Karita, S., et al. (2000). Bioscience Biotechnology and Biochemistry, 64, 2734–2738.

    Article  CAS  Google Scholar 

  5. Golubev, A. M., Kilimnik, A. Y., Neustroev, K. N., & Pickersgill, R. W. (1993). Journal of Molecular Biology, 230, 661–663.

    Article  CAS  Google Scholar 

  6. Kimura, T., Suzuki, H., Furuhashi, H., Aburatani, T., Morimoto, K., Sakka, K., & Ohmiya, K. (2002). Bioscience Biotechnology and Biochemistry, 66, 285–292.

    Article  CAS  Google Scholar 

  7. Kitamoto, N., Yoshino, S., Ito, M., Kimura, T., Ohmiya, K., Tsukagoshi, N., et al. (1998). Applied Microbiology and Biotechnology, 50, 558–563.

    Article  CAS  Google Scholar 

  8. Bakalova, N., Petrova, S., & Kolev, D. (1996). Pharmazie, 51, 761–764.

    CAS  Google Scholar 

  9. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., et al. (2005). Nature, 438, 1157–1161.

    Article  Google Scholar 

  10. Kitamoto, N., Yoshino, S., Ohmiya, K., & Tsukagoshi, N. (1999). Bioscience Biotechnology and Biochemistry, 63, 1791–1794.

    Article  CAS  Google Scholar 

  11. Lu, J., Cao, Y., & Chen, J. (2002). Wei Sheng Wu Xue Bao, 42, 425–430.

    CAS  Google Scholar 

  12. Kikuchi, M., Kitamoto, N., & Shishido, K. (2004). Applied Microbiology and Biotechnology, 63, 728–733.

    Article  CAS  Google Scholar 

  13. Qin, Y. L., Zhang, Y. K., He, H. Y., Zhu, J., Chen, G. G., Li, W., & Liang, Z. Q. (2011). Applied Biochemistry and Biotechnology, 163, 1012–1019.

    Article  CAS  Google Scholar 

  14. Qin, Y. L., & He, H. Y. (2011). Industrial Microbiology (China), 4, 77–82.

    Google Scholar 

  15. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  16. Miller, G. L. (1959). Analytical Chemistry, 31(16), 426–428.

    Article  CAS  Google Scholar 

  17. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–454.

    Article  CAS  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  19. Gosalbes, M. J., Pérez-González, J. A., González, R., & Navarro, A. (1991). Journal of Bacteriology, 173, 7705–7710.

    CAS  Google Scholar 

  20. Scheibner, M., Hülsdau, B., Zelena, K., Nimtz, M., de Boer, L., Berger, R. G., & Zorn, H. (2008). Applied Microbiology and Biotechnology, 77, 1241–1250.

    Article  CAS  Google Scholar 

  21. Gao, H., Yan, P., Zhang, B., & Shan, A. (2014). Applied Biochemistry and Biotechnology, 73(8), 2028–2041.

    Article  Google Scholar 

  22. Jo, Y. Y., Jo, K. J., Jin, Y. L., Kim, K. Y., Shim, J. H., Kim, Y. W., et al. (2003). Bioscience Biotechnology and Biochemistry, 67, 1875–1882.

    Article  CAS  Google Scholar 

  23. Dashtban, M., Maki, M., Leung, K. T., Mao, C., & Qin, W. (2010). Critical Reviews in Biotechnology, 30(4), 302–329.

    Article  CAS  Google Scholar 

  24. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56(3), 658–666.

    Article  CAS  Google Scholar 

  25. Chipeta, Z. A., du Preez, J. C., & Christopher, L. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 587–594.

    Article  CAS  Google Scholar 

  26. Prior, B. A., & Day, D. F. (2008). Applied Biochemistry and Biotechnology, 146, 151–164.

    Article  CAS  Google Scholar 

  27. Van Dyk, J. S., Sakka, M., Sakka, K., & Pletschke, B. I. (2010). Enzyme and Microbial Technology, 47(3), 112–118.

    Article  Google Scholar 

  28. Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.

    Article  CAS  Google Scholar 

  29. Schmidt, A., Schlacher, A., Steiner, W., Schwab, H., & Kratky, C. (1998). Protein Science, 7, 2081–2088.

    Article  CAS  Google Scholar 

  30. Baldrian, P., & Gabriel, J. (2002). FEMS Microbiology Letters, 206, 69–74.

    Article  CAS  Google Scholar 

  31. Allison, T. M., Yeoman, J. A., Hutton, R. D., Cochrane, F. C., Jameson, G. B., & Parker, E. J. (2010). Biochimica et Biophysica Acta, 1804(7), 1526–1536.

    Article  CAS  Google Scholar 

  32. Xiang, D. F., Kumaran, D., Swaminathan, S., & Raushel, F. M. (2014). Biochemistry, 53(21), 3476–3485.

    Article  CAS  Google Scholar 

  33. Jeng, W. Y., Wang, N. C., Lin, C. T., Shyur, L. F., & Wang, A. H. (2011). Journal of Biological Chemistry, 286(52), 45030–45040.

    Article  CAS  Google Scholar 

  34. Saylor, B. T., Reinhardt, L. A., Lu, Z., Shukla, M. S., Nguyen, L., Cleland, W. W., Angerhofer, A., Allen, K. N., & Richards, N. G. (2012). Biochemistry, 51(13), 2911–2920.

    Article  CAS  Google Scholar 

  35. Sherief, A. A. (1990). Acta Microbiologica Hungarica, 37, 301–306.

    CAS  Google Scholar 

  36. Raj, K. C., & Chandra, T. S. (1996). FEMS Microbiology Letters, 145, 457–461.

    Article  CAS  Google Scholar 

  37. Romanowska, I., Polak, J., & Bielecki, S. (2006). Applied Microbiology and Biotechnology, 69, 665–671.

    Article  CAS  Google Scholar 

  38. Lu, F., Lu, M., Lu, Z., Bie, X., Zhao, H., & Wang, Y. (2008). Bioresource Technology, 99, 5938–5941.

    Article  CAS  Google Scholar 

  39. Teixeira, R. S., Siqueira, F. G., Souza, M. V., Filho, E. X., & Bon, E. P. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 1041–1051.

    Article  CAS  Google Scholar 

  40. Pathak, P., Bhardwaj, N. K., & Singh, A. K. (2014). Applied Biochemistry and Biotechnology, 172(8), 3776–3797.

    Article  CAS  Google Scholar 

  41. Canakci, S., Cevher, Z., Inan, K., Tokgoz, M., Bahar, F., Kacagan, M., & Sal, F. A. A. O. (2012). World Journal of Microbiology and Biotechnology, 28(5), 1981–1988.

    Article  CAS  Google Scholar 

  42. Mielenz, J. R. (2001). Current Opinion in Microbiology, 4, 324–329.

    Article  CAS  Google Scholar 

  43. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). FEMS Microbiology Reviews, 13, 335–350.

    Article  CAS  Google Scholar 

  44. Wakiyama, M., Yoshihara, K., Hayashi, S., & Ohta, K. (2010). Journal of Bioscience and Bioengineering, 109, 227–229.

    Article  CAS  Google Scholar 

  45. Saleem, M., Aslam, F., Akhtar, M. S., Tariq, M., & Rajoka, M. I. (2012). World Journal of Microbiology and Biotechnology, 28(2), 513–522.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Guangxi Experiment Centre of Science and Technology (LGZXKF201109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Liang.

Additional information

Haiyan He and Yongling Qin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Qin, Y., Li, N. et al. Purification and Characterization of a Thermostable Hypothetical Xylanase from Aspergillus oryzae HML366. Appl Biochem Biotechnol 175, 3148–3161 (2015). https://doi.org/10.1007/s12010-014-1352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1352-x

Keywords

Navigation