Skip to main content
Log in

Carotenoid and Fatty Acid Compositions of an Indigenous Ettlia texensis Isolate (Chlorophyceae) Under Phototrophic and Mixotrophic Conditions

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ettlia oleoabundance (formerly known as Neochloris oleoabundance) is an attractive candidate for biodiesel production because of its high lipid accumulation, and it’s taking the majority of the attention among the strains of Ettlia genus; however, potential of the other genus members is unknown. An indigenous strain from Salda Lake (South West Turkey) identified by 18S rDNA sequencing as Ettlia texensis (GenBank accession no: JQ038221), and its fatty acid and carotenoid compositions under phototrophic and mixotrophic conditions was investigated to evaluate the potential of the strain for commercial uses. A threefold increase was observed in total lipid content (total fatty acids; from 13 % to 37 %) in mixotrophic culture respect to the phototrophic growth conditions. The oleic acid (C18:1) and alpha-linolenic acid (18:3) were the major unsaturated fatty acids accounting for 40 % and 13.2 % of total fatty acids in mixotrophic culture, respectively. Carotenoid analyses of the mixotrophic culture revealed the metabolite canthaxanthin, a commercially valuable carotenoid used mainly for food coloring, was the major constituent among other pigments. The possible use of E. texensis in biotechnological applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TAGEM:

Turkish General Directorate of Agricultural Research and Policy

TUBITAK:

The Scientific and Technological Research Council of Turkey

PHOT:

Phototrophic culture conditions

MIX:

Mixotrophic culture conditions

EGEMACC:

The Microalgae Culture Collection of Ege University

BBM:

Bold basal medium

TBE:

Tris–boric acid–EDTA

NCBI:

National Center for Biotechnology Information

MEGA:

Molecular Evolutionary Genetics Analysis

U-HPLC:

Ultra high-performance liquid chromatography

BHT:

Butylated hydroxytoluene

TFA:

Total fatty acids

References

  1. Walker, T., Purton, S., Becker, D. K., & Collet, C. (2005). Plant Cell Reports, 24, 629–641.

    Article  CAS  Google Scholar 

  2. Pulz, O., & Gross, W. (2004). Applied Microbiology and Biotechnology, 65, 635–648.

    Article  CAS  Google Scholar 

  3. Gouveia, L., & Oliveira, A. C. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 269–274.

    Article  CAS  Google Scholar 

  4. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Renewable & Sustainable Energy Reviews, 14, 217–232.

    Article  CAS  Google Scholar 

  5. Starr, R. C. (1955). Indiana University Publ. Sci. Ser. No. 20. 1–111: Indiana University Press, Bloomington, Indiana.

  6. Deason, T. R., Silva, P. C., Watanabe, S., & Floyd, G. L. (1991). Plant Systematics and Evolution, 177, 213–219.

    Article  Google Scholar 

  7. Watanabe, S., Himizu, A., Lewis, L. A., Floyd, G. L., & Fuerst, P. A. (2000). Journal of Phycology, 36, 596–604.

    Article  Google Scholar 

  8. Shoup, S., & Lewis, L. A. (2003). Journal of Phycology, 39, 789–796.

    Article  CAS  Google Scholar 

  9. Lewis, L. A., & McCourt, R. M. (2004). American Journal of Botany, 91(10), 1535–1556.

    Article  Google Scholar 

  10. Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81(4), 629–636.

    Article  CAS  Google Scholar 

  11. Gouveia, L., Marques, A. E., Silva, T. L., & Reis, A. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 821–826.

    Article  CAS  Google Scholar 

  12. Wang, B., & Lan, C. Q. (2011). Canadian Journal of Chemical Engineering, 89, 932–939.

    Article  CAS  Google Scholar 

  13. Giovanardi, M., Ferroni, L., Baldisserotto, C., Tedeschi, P., Maietti, A., Pantaleoni, L., et al. (2012). Protoplasma, 224, 167–177.

    Google Scholar 

  14. Stein, J.R. (1973). Handbook of phycological methods: Culture methods and growth measurements. Cambridge University Press, Cambridge.

  15. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.

    Article  CAS  Google Scholar 

  16. Lichtenthaler, H. K., & Buschmann, C. (2001). In Current protocols in food analytical chemistry. New York: John Wiley and Sons, Inc. F4.3.1-F4.3.8.

    Google Scholar 

  17. Bligh, E. G., & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  Google Scholar 

  18. Christie, W.W. (2003). In Lipid analysis: Isolation, separation and structural analysis of lipids, 3rd ed. (Christie, W. W., ed.), J. Barnes and Associates, Dundee, Scotland, pp. 205–225.

  19. Lewis, L. A., Wilcox, L. W., Fuerst, P. A., & Floyd, G. L. (1992). Journal of Phycology, 28, 375–380.

    Article  CAS  Google Scholar 

  20. Neustupa, J., Elias, M., Skaloud, P., Nemcova, Y., & Sejnohova, L. (2011). Phycologia, 50(1), 57–66.

    Article  Google Scholar 

  21. Domozych, D. S., Ciancia, M., Fangel, J. U., Dalgaard Mikkelsen, M., Ulvskov, P., & Willats, W. G. T. (2012). Frontiers in Plant Sci, 82(3), 1–7.

    Google Scholar 

  22. Allard, B., Rager, M., & Templier, J. (2002). Organic Geochemistry, 33, 789–801.

    Article  CAS  Google Scholar 

  23. Versteegh, G. J. M., & Blokker, P. (2004). Phycological Research, 52, 325–339.

    Article  CAS  Google Scholar 

  24. Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Journal of Applied Phycology, 13, 19–24.

    Article  Google Scholar 

  25. Cinar, I. (2005). Process Biochemistry, 40, 945–949.

    Article  CAS  Google Scholar 

  26. Pirastru, L., Darwish, M., Chu, F. L., Perreault, F., Sirois, L., Sleno, L., et al. (2012). Journal of Applied Phycology, 24, 117–124.

    Article  CAS  Google Scholar 

  27. Takaichi, S. (2011). Marine Drugs, 9, 1101–1118.

    Article  CAS  Google Scholar 

  28. Del Campo, J. A., Moreno, J., Rodriguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Journal of Biotechnology, 76, 51–59.

    Article  Google Scholar 

  29. Orosa, M., Torres, E., Fidalgo, P., & Abalde, J. (2000). Journal of Applied Phycology, 12, 553–556.

    Article  CAS  Google Scholar 

  30. Orosa, M., Valero, J. F., Herrero, C., & Abalde, J. (2001). Biotechnological Letters, 23, 1079–1085.

    Article  CAS  Google Scholar 

  31. Santos, A. M., Janssen, M., Lamers, P. P., Evers, W. A. C., & Wijffels, R. H. (2012). Bioresource Technology, 104, 593–599.

    Article  CAS  Google Scholar 

  32. Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y., & Che, F. (2011). Bioresource Technology, 102, 106–110.

    Article  CAS  Google Scholar 

  33. Knothe, G. (2009). Energy & Environmental Science, 2, 759–766.

    Article  CAS  Google Scholar 

  34. Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2005). Applied Microbiology and Biotechnology, 68, 237–241.

    Article  CAS  Google Scholar 

  35. Rabbani, S., Beyer, P., Lonting, J. V., Hugueney, P., & Kleining, H. (1998). Plant Physiology, 116, 1239–1248.

    Article  CAS  Google Scholar 

  36. Mendoza, H., Martel, A. M., Jimenez del Rio, M., & Garcia Reina, G. (1999). Journal of Applied Phycology, 11, 15–19.

    Article  CAS  Google Scholar 

  37. Ben-Amotz, A., & Avron, M. (1983). Plant Physiology, 72, 593–597.

    Article  CAS  Google Scholar 

  38. Pisal, D. S., & Lele, S. S. (2004). Indian Journal of Biotechnology, 4, 476–483.

    Google Scholar 

  39. He, P., Duncan, J., & Barber, J. (2007). Journal of Integrated Plant Biology, 49(4), 447–451.

    Article  CAS  Google Scholar 

  40. Lamers, et al. (2010). Biotechnology and Bioengineering, 106(4), 638–648.

    Article  CAS  Google Scholar 

  41. Zhekisheva, et al. (2002). Journal of Phycology, 38, 325–331.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the projects from Turkish General Directorate of Agricultural Research and Policy (TAGEM) and The Scientific and Technological Research Council of Turkey (TUBITAK). We would like to thank Prof. Dr. Erdal Bedir for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Yıldırım.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yıldırım, A., Demirel, Z., İşleten-Hoşoğlu, M. et al. Carotenoid and Fatty Acid Compositions of an Indigenous Ettlia texensis Isolate (Chlorophyceae) Under Phototrophic and Mixotrophic Conditions. Appl Biochem Biotechnol 172, 1307–1319 (2014). https://doi.org/10.1007/s12010-013-0599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0599-y

Keywords

Navigation