Skip to main content
Log in

Two-Step Purification of a Novel β-Glucosidase with High Transglycosylation Activity and Another Hypothetical β-Glucosidase in Aspergillus oryzae HML366 and Enzymatic Characterization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two novel β-glucosidases (BGHG1 and BGHG2) were purified from the enzyme extract of Aspergillus oryzae HML366 through nondenaturing gel electrophoresis and anion-exchange chromatography. The molecular weights for BGHG1 and BGHG2 were 93 and 138 kDa, respectively. The amino acid sequences were determined by matrix-assisted laser desorption/ionization tandem time of flight. The Mascot and Blast analyses indicated that BGHG1 has the same sequence as the hypothetical protein XP_001816831 from A. oryzae RIB40. Sequence comparison suggested that both enzymes belong to the glycosyl hydrolase family 3. Results from thin layer chromatography and high performance liquid chromatography showed that BGHG2 has relatively high transglycosylation activity, and after preliminary optimization, it was able to convert glucose to produce 52.48 mg/ml gentiobiose. This is the first report of production of hypothetical protein XP_001816831 and β-glucosidase with high transglycosylation activity in A. oryzae. Results provide a valuable reference for potential applications in food industry, biomass power generating industry, and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Palma, F. E. R. D., Gomes, E., & Da-Silva, R. (2002). Folia Microbiologica, 47, 685–690.

    Article  Google Scholar 

  2. Lynd, L. R., Weim, P. J., Willem, H. Z., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  3. Teeri, T. T. (1997). Trends in Biotechnology, 15, 160–167.

    Article  Google Scholar 

  4. Shoemaker, S. P., & Brown, R. D., Jr. (1978). Biochimica et Biophysica Acta, 523, 147–161.

    Article  CAS  Google Scholar 

  5. Workman, W. E., & Day, D. F. (1982). Applied and Environmental Microbiology, l44, 1289–1295.

    Google Scholar 

  6. Bothast, R. J., & Saha, B. C. (1997). Advances in Applied Microbiology, 44, 261–286.

    Article  CAS  Google Scholar 

  7. Beguin, P., & Aubert, J. P. (1994). FEMS Microbiology Reviews, 13, 25–28.

    Article  CAS  Google Scholar 

  8. Saitoh, S., Hasunuma, T., Tanaka, T., & Kondo, A. (2010). Applied Microbiology and Biotechnology, 87(5), 1975–1982.

    Article  CAS  Google Scholar 

  9. Guegen, Y., Chemardin, P., Janbon, G., Arnaud, A., & Galzy, P. (1996). Journal of Agricultural and Food Chemistry, 44, 2336–2340.

    Article  Google Scholar 

  10. Seidle, H. F., & Huber, R. E. (2005). Archives of Biochemistry and Biophysics, 436, 254–264.

    Article  CAS  Google Scholar 

  11. Shinoyama, H., Takei, K., Ando, A., Fujii, T., Sasaki, M., Doi, Y., & Yasui, T. (1991). Agricultural Biology and Chemistry, 55, 1679–1681.

    Article  CAS  Google Scholar 

  12. Barreteau, H., Delattre, C., & Michaud, P. (2006). Food Technology and Biotechnology, 44, 323–333.

    CAS  Google Scholar 

  13. Nakakuki, T. (2003). Trends in Glycoscience and Glycotechnology, 82, 57–64.

    Article  Google Scholar 

  14. Gibson, G. R., & Roberfroid, M. B. (1995). Journal of Nutrition, 125, 1401–1412.

    CAS  Google Scholar 

  15. Rycroft, C. E., Jones, M. R., Gibson, G. R., & Rastall, R. A. (2001). Letters in Applied Microbiology, 32, 156–161.

    Article  CAS  Google Scholar 

  16. Crout, D. H. G., & Vic, G. (1998). Current Opinion in Chemical Biology, 2, 98–111.

    Article  CAS  Google Scholar 

  17. Watt, G. M., Lowden, P. A., & Flitsch, S. L. (1997). Current Opinion in Structural Biology, 7, 652–666.

    Article  CAS  Google Scholar 

  18. Arja, M., John, L., Vesa, J., & Raija, L. (2004). Enzyme and Microbial Technology, 34, 332–341.

    Article  Google Scholar 

  19. Saloheimo, M., Tiina, N. S., Maija, T., & Merja, P. (1997). European Journal of Biochemistry, 24, 584–591.

    Article  Google Scholar 

  20. Qin, Y. L., Zhang, Y. K., He, H. Y., Zhu, J., Chen, G. G., Li, W., & Liang, Z. Q. (2011). Applied Biochemistry and Biotechnology, 163, 1012–1019.

    Article  CAS  Google Scholar 

  21. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., et al. (2005). Nature, 438, 1157–1161.

    Article  Google Scholar 

  22. Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.

    Article  CAS  Google Scholar 

  23. Kwon, K. S., Lee, J., Kang, H. G., & Hah, Y. C. (1994). Applied and Environmental Microbiology, 60, 4584–4586.

    CAS  Google Scholar 

  24. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  26. Jo, Y. Y., Jo, K. J., Jin, Y. L., Kim, K. Y., Shim, J. H., Kim, Y. W., & Park, R. D. (2003). Bioscience, Biotechnology, and Biochemistry, 67, 1875–1882.

    Article  CAS  Google Scholar 

  27. Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56, 658–666.

    Article  CAS  Google Scholar 

  28. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–626.

    Article  CAS  Google Scholar 

  29. Smaali, M. I., Michaud, N., Marzouki, N., Legoy, M. D., & Maugard, T. (2004). Biotechnology Letters, 26, 675–679.

    Article  CAS  Google Scholar 

  30. Seidle, H. F., Allison, S. J., George, E., & Huber, R. E. (2006). Archives of Biochemistry and Biophysics, 455, 110–118.

    Article  CAS  Google Scholar 

  31. Pal, S., Banik, S. P., Ghorai, S., Chowdhury, S., & Khowala, S. (2010). Bioresource Technology, 101, 2412–2420.

    Article  CAS  Google Scholar 

  32. Riou, C., Salmon, J. M., Vallier, M. J., Günata, Z., & Barre, P. (1998). Applied and Environmental Microbiology, 64, 3607–3614.

    CAS  Google Scholar 

  33. Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., & Ueda, M. (2008). Journal of Bioscience and Bioengineering, 105, 622–627.

    Article  CAS  Google Scholar 

  34. Kaya, M., Ito, J., Kotaka, A., Matsumura, K., Bando, H., Sahara, H., Ogino, C., Shibasaki, S., Kuroda, K., Ueda, M., Kondo, A., & Hata, Y. (2008). Applied Microbiology and Biotechnology, 79, 51–60.

    Article  CAS  Google Scholar 

  35. Langston, J., Sheehy, N., & Xu, F. (2006). Biochimica et Biophysica Acta, 1764, 972–978.

    Article  CAS  Google Scholar 

  36. Seidle, H. F., Marten, I., Shoseyov, O., & Huber, R. E. (2004). The Protein Journal, 23, 11–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20066001), Guangxi Experiment Centre of Science and Technology (LGZXKF201109), Key Research Project of Guangxi Zhuang minority Autonomous Region education department (201102ZD032). Natural Science Foundation of Guangxi Province of China (2010GXNSFA013103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Liang.

Additional information

H. He and Y. Qin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, H., Qin, Y., Chen, G. et al. Two-Step Purification of a Novel β-Glucosidase with High Transglycosylation Activity and Another Hypothetical β-Glucosidase in Aspergillus oryzae HML366 and Enzymatic Characterization. Appl Biochem Biotechnol 169, 870–884 (2013). https://doi.org/10.1007/s12010-012-9936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9936-9

Keywords

Navigation