Skip to main content

Advertisement

Log in

The Cellulase-Mediated Saccharification on Wood Derived from Transgenic Low-Lignin Lines of Black Cottonwood (Populus trichocarpa)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Downregulated lignin transgenic black cottonwood (Populus trichocarpa) was used to elucidate the effect of lignin and xylan content on enzymatic saccharification. The lignin contents of three transgenic samples (4CL1-1, 4CL1-4, and CH8-1-4) were 19.3, 16.7, and 15.0 %, respectively, as compared with the wild type (21.3 %). The four pretreatments were dilute acid (0.1 % sulfuric acid, 185 °C, 30 min), green liquor (6 % total titratable alkali, 25 % sulfidity based on TTA, 185 °C, and 15 min.), autohydrolysis (185 °C, 30 min), and ozone delignification (25 °C, 30 min). Following the pretreatment, enzymatic saccharification was carried out using an enzyme charge of 5 FPU/g of substrates. The removal of lignin and hemicellulose varies with both the types of pretreatments and the lignin content of the transgenic trees. Due to the greatest removal of lignin, green liquor induced the highest sugar production and saccharification efficiency, followed by acid, ozone, and autohydrolysis in descending order. The results indicated that lignin is the main recalcitrance of biomass degradation. At a given lignin content, pretreatment with ozone delignification had lower saccharification efficiency than the other pretreatment methods due to higher xylan content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, M., Wu, M., & Huo, H. (2007). Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environmental Research Letters, 2, 1–13.

    Article  CAS  Google Scholar 

  2. Licht, F. O. (2006). World ethanol markets: the outlook to 2015; Agra Europe special report: Tunbridge Wells.

  3. Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2, 472–499.

    CAS  Google Scholar 

  4. Taherzadeh, M. J., & Karimi, K. (2007). Enzymatic-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2, 707–738.

    CAS  Google Scholar 

  5. Wyman, C. E. (1996). Handbook on bioethanol: production and utilization. Washington DC: Taylor & Francis.

    Google Scholar 

  6. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., et al. (2006). Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology, 125, 198–209.

    Article  CAS  Google Scholar 

  7. Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass and Bioenergy, 30, 247–253.

    Article  CAS  Google Scholar 

  8. Sanchez, G., Pilcher, L., Roslander, C., Modig, T., Galbe, M., & Liden, G. (2004). Dilute-acid hydrolysis for fermentation of the Bolivian straw material Paja Brava. Bioresource Technology, 93, 249–256.

    Article  CAS  Google Scholar 

  9. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Pretreatment of switchgrass by ammonia fiber explosion (AFEX). Applied Biochemistry and Biotechnology, 124, 1133–1141.

    Article  Google Scholar 

  10. Sassner, P., Galbe, M., & Zacchi, G. (2005). Steam pretreatment of Salix with and without SO2 impregnation for production of bioethanol. Applied Biochemistry and Biotechnology, 121, 1101–1117.

    Article  Google Scholar 

  11. Jin, Y., Jameel, H., Chang, H. M., & Phillips, R. B. (2010). Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed Kraft Pulp Mill. Journal of Wood Chemistry and Technology, 30(1), 86–104.

    Article  CAS  Google Scholar 

  12. Wu, S., Chang, H.-m., Jameel, H., & Phillips, R. B. (2010). Novel green liquor pretreatment of loblolly pine chips to facilitate enzymatic hydrolysis into fermentable sugars for ethanol production. Journal of Wood Chemistry and Technology, 30(3), 205–218.

    Article  Google Scholar 

  13. Chen, C. L. (1992). Nitrobenzene and cupric oxide oxidations. In S. Y. Lin & C. W. Dence (Eds.), Methods in lignin chemistry (pp. 301–321). Berlin: Springer.

    Chapter  Google Scholar 

  14. Pan, G. Y., Chen, C. L., Chang, H. M., & Gratzl, J. S. (1984). Studies on ozone bleaching I., the effect of pH, temperature, buffer system and heavy metal-ions on stability of ozone in aqueous solution. Journal of Wood Chemistry and Technology, 4(3), 367–387.

    Article  CAS  Google Scholar 

  15. Kabel, M. A., Bos, G., Zeevalking, J., Voragen, A. G. J., & Schols, H. A. (2009). Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technology, 8, 2034–2042.

    Google Scholar 

  16. Parveen, K., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  Google Scholar 

  17. Mohammad, J. T., & Keikhosro, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.

    Article  Google Scholar 

  18. Thompson, D. N., Chen, H. C., & Grethlein, H. E. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  19. Brunecky, R., Vinzant, T. B., Porter, S., Donohoe, B. S., Johnson, D. K., & Himmel, M. (2009). Redistribution of xylan in maize cell walls during dilute acid pretreatment. Biotechnology and Bioengineering, 102(6), 1537–1543.

    Article  CAS  Google Scholar 

  20. Ashok, P. (Ed.). (2009). Handbook of plant-based biofuels. Boca Raton: CRC Press. ISBN 1560221755, 9781560221753.

    Google Scholar 

  21. Parveen, K., et al. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  Google Scholar 

  22. Thompson, D. N., et al. (1992). Comparison of pretreatment methods on the basis of available surface area. Bioresource Technology, 39, 155–163.

    Article  CAS  Google Scholar 

  23. Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  24. Pipon, G., et al. (2007). Comparative effect of ozone, chlorine dioxide, and hydrogen peroxide on lignin: reactions affecting pulp color in the field bleaching stage. Holzforschung, 61, 628–633.

    Article  CAS  Google Scholar 

  25. Gharpuray, M. M., et al. (1983). Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnology and Bioengineering, 25, 157–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Southeastern Sun Grant Center of the USA for the financial support of this study and to Novezymes North America, Inc., for providing the enzymes used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douyong Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, D., Li, Q., Jameel, H. et al. The Cellulase-Mediated Saccharification on Wood Derived from Transgenic Low-Lignin Lines of Black Cottonwood (Populus trichocarpa). Appl Biochem Biotechnol 168, 947–955 (2012). https://doi.org/10.1007/s12010-012-9833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9833-2

Keywords

Navigation