Skip to main content
Log in

Screening and Production of Ligninolytic Enzyme by a Marine-Derived Fungal Pestalotiopsis sp. J63

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Marine-derived fungi are prone to produce structurally unique secondary metabolites, a considerable number of which display the promising biological properties and/or industrial applications. Among those, ligninolytic enzymes have attracted great interest in recent years. In this work, about 20 strains were isolated from sea mud samples collected in the East China Sea and then screened for their capacity to produce lignin-degrading enzymes. The results showed that a strain, named J63, had a great potential to secrete a considerable amount of laccase. Using molecular method, it was identified as an endophytic fungus, Pestalotiopsis sp. which was rarely reported as ligninolytic enzyme producer in the literature. The production of laccase by Pestalotiopsis sp. J63 was investigated under submerged fermentation (SF) and solid state fermentation (SSF) with various lignocellulosic by-products as substrates. The SSF of rice straw powder accumulated the highest level of laccase activity (10,700 IU/g substrate), whereas the SF of untreated sugarcane bagasse provided the maximum amount of laccase activity (2,000 IU/ml). The value was far higher than those reported by other reports. In addition, it produced 0.11 U/ml cellulase when alkaline-pretreated sugarcane bagasse was used as growth substrate under SF. Meanwhile, the growth of fungi and laccase production under different salinity conditions were also studied. It appeared to be a moderately halo-tolerant organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy, C. A. (1995). The potential for white-rot fungi in the treatment of pollutants. Current Opinion in Biotechnology, 6, 320–328.

    Article  CAS  Google Scholar 

  2. Raghukumar, C., D'Souza, T. M., Thorn, R. G., & Reddy, C. A. (1999). Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Applied and Environmental Microbiology, 65, 2103–2111.

    CAS  Google Scholar 

  3. D'Souza, D. T., Tiwari, R., Sah, A. K., & Raghukumar, C. (2006). Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme and Microbial Technology, 38, 504–511.

    Article  Google Scholar 

  4. Maciel, M. J. M., Silva, A. C. E., & Ribeiro, H. C. T. (2010). Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: a review. Electronic Journal of Biotechnology, 13, 6.

    Google Scholar 

  5. Rodriguez Couto, S., & Toca Herrera, J. L. (2006). Industrial and biotechnological applications of laccases: a review. Biotechnology Advances, 24, 500–513.

    Article  CAS  Google Scholar 

  6. Pointing, S. B. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.

    Google Scholar 

  7. Wesenberg, D., Kyriakides, I., & Agathos, S. N. (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnology Advances, 22, 161–187.

    Article  CAS  Google Scholar 

  8. Saparrat, M. C. N., Guillen, F., Arambarri, A. M., Martinez, A. T., & Martinez, M. J. (2002). Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida. Applied and Environmental Microbiology, 68, 1534–1540.

    Article  CAS  Google Scholar 

  9. Arun, A., Raja, P., Arthi, R., Ananthi, M., Kumar, K., & Eyini, M. (2008). Polycyclic aromatic hydrocarbons (PAHs) Biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Applied Biochemistry and Biotechnology, 151, 132–142.

    Google Scholar 

  10. Bugni, T. S., & Ireland, C. M. (2004). Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural Product Reports, 21, 143–163.

    Article  CAS  Google Scholar 

  11. Jones, E. B. G., Stanley, S. J., & Pinruan, U. (2008). Marine endophyte sources of new chemical natural products: a review. Botanica Marina, 51, 163–170.

    Article  Google Scholar 

  12. Sette, L. D., Passarini, M. R. Z., Rodrigues, M. V. N., & da Silva, M. (2011). Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Marine Pollution Bulletin, 62, 364–370.

    Article  Google Scholar 

  13. Sette, L. D., Bonugli-Santos, R. C., Durrant, L. R., & da Silva, M. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46, 32–37.

    Article  Google Scholar 

  14. Ali, M. S., Saleem, M., Hussain, S., Jabbar, A., Ashraf, M., & Lee, Y. S. (2007). Marine natural products of fungal origin. Natural Product Reports, 24, 1142–1152.

    Article  Google Scholar 

  15. Ebel, R., & Rateb, M. E. (2011). Secondary metabolites of fungi from marine habitats. Natural Product Reports, 28, 290–344.

    Article  Google Scholar 

  16. Newell, S. Y. (1996). Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. Journal of Experimental Marine Biology ad Ecolology, 200, 187–206.n

    Google Scholar 

  17. Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology & Biotechnology, 25, 331–339.

    Google Scholar 

  18. Mishra, A., & Kumar, S. (2009). Kinetic studies of laccase enzyme of Coriolus versicolor MTCC 138 in an inexpensive culture medium. Biochemical Engineering Journal, 46, 252–256.

    Article  CAS  Google Scholar 

  19. Mishra, A., Kumar, S., & Kumar Pandey, A. (2011). Laccase production and simultaneous decolorization of synthetic dyes in unique inexpensive medium by new isolates of white rot fungus. International Biodeterioration and Biodegration, 65, 487–493.

    Article  CAS  Google Scholar 

  20. Zeng, X., Cai, Y., Liao, X., Li, W., & Zhang, D. (2011). Decolorization of synthetic dyes by crude laccase from a newly isolated Trametes trogii strain cultivated on solid agro-industrial residue. Journal of Hazardour Materials, 187, 517–525.

    Article  CAS  Google Scholar 

  21. Rosales, E., Rodríguez Couto, S., & Sanromán, M. A. (2007). Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzyme and Microbial Technology, 40, 1286–1290.

    Article  CAS  Google Scholar 

  22. Elisashvili, V., Penninckx, M., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Kharziani, T., et al. (2008). Lentinus edodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresource Technology, 99, 457–462.

    Article  CAS  Google Scholar 

  23. Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, 35, 1531–1538.

    Article  CAS  Google Scholar 

  24. Levin, L., Herrmann, C., & Papinutti, V. L. (2008). Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochemical Engineering Journal, 39, 207–214.

    Article  CAS  Google Scholar 

  25. Gómez, J., Pazos, M., RodrIguez Couto, S., & Sanromán, M. Á. (2005). Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Journal of Food Engineering, 68, 315–319.

    Article  Google Scholar 

  26. Couto, S. R., & Toca-Herrera, J. L. (2006). Laccase production at reactor scale by filamentous fungi. Biotechnology Advances, 25, 558–569.

    Google Scholar 

  27. Pandey, A. (1992). Recent process—Developments in solid-state fermentation. Process Biochemistry, 27, 109–117.

    Article  CAS  Google Scholar 

  28. Karanth, N. G., Raghavarao, K. S. M. S., & Ranganathan, T. V. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 13, 127–135.

    Article  Google Scholar 

  29. D’Souza-Ticlo, D., Sharma, D., & Raghukumar, C. (2009). A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnology, 11, 725–737.

    Article  Google Scholar 

  30. Bonugli-Santos, R. C., Durrant, L. R., & Sette, L. D. (2010). Laccase activity and putative laccase genes in marine-derived basidiomycetes. Fungal Biology UK, 114, 863–872.

    Article  CAS  Google Scholar 

  31. Baldrian, P. (2003). Interactions of heavy metals with white-rot fungi. Enzyme and Microbial Technology, 32, 78–91.

    Article  CAS  Google Scholar 

  32. Hao, J., Song, F., Huang, F., Yang, C., Zhang, Z., Zheng, Y., et al. (2007). Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. Journal of Industrial Microbiology and Biotechnology, 34, 233–240.

    Article  CAS  Google Scholar 

  33. D’Souza-Ticlo, D., Garg, S., & Raghukumar, C. (2009). Effects and interactions of medium components on laccase from a marine-derived fungus using response surface methodology. Marine Drugs, 7, 672–688.

    Article  Google Scholar 

  34. Brar, S. K., Gassara, F., Tyagi, R. D., Verma, M., & Surampalli, R. Y. (2010). Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochemical Engineering Journal, 49, 388–394.

    Article  Google Scholar 

  35. Thygesen, A., Thomsen, A. B., Schmidt, A. S., Jørgensen, H., Ahring, B. K., & Olsson, L. (2003). Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 32, 606–615.

    Article  CAS  Google Scholar 

  36. Dillon, A., & Camassola, M. (2007). Production of cellulases and hemicellulases by Penicillium echinulatum grown on pretreated sugar cane bagasse and wheat bran in solid-state fermentation. Journal of Applied Microbiology, 103, 2196–2204.

    Article  Google Scholar 

  37. Singh, A., Tuteja, S., Singh, N., & Bishnoi, N. R. (2011). Enhanced saccharification of rice straw and hull by microwave-alkali pretreatment and lignocellulolytic enzyme production. Bioresource Technology, 102, 1773–1782.

    Article  CAS  Google Scholar 

  38. Aboud, A. A. O., Kidunda, R. S., & Osarya, J. (2005). Potential of water hyacinth (Eicchornia crassipes) in ruminant nutrition in Tanzania. Livestock Research for Rural Development, 17.

  39. Abdel-sabour, M. F. (2010). Water hyacinth: available and renewable resource. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 1746–1759.

    Google Scholar 

  40. Ghosh, S., Kumar, A., & Singh, L. K. (2009). Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresource Technology, 100, 3293–3297.

    Article  Google Scholar 

  41. D’Annibale, A., Quaratino, D., Federici, F., Petruccioli, M., & Fenice, M. (2007). Production, purification and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577.79. Anton Leeuwhoek International Journal of General and Molecular Microbiology, 91, 57–69.

    Google Scholar 

  42. Martin, C., Almazan, O., Marcet, M., & Jonsson, L. J. (2007). A study of three strategies for improving the fermentability of sugarcane bagasse hydrolysates for fuel ethanol production. International Sugar Journal, 109, 33.

    CAS  Google Scholar 

  43. Aguiar, M. M., Ferreira, L. F. R., & Monteiro, R. T. R. (2010). Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Brazilian Archives of Biology and Technology, 53, 1245–1254.

    Article  Google Scholar 

  44. Pandey, A. (2003). Solid-state fermentation. Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  45. Zheng, Y., Pan, Z., & Zhang, R. (2009). Overview of biomass pretreatment for cellulosic ethanol production. International Journal of Agricultural & Biological Engineering, 2, 51–68.

    CAS  Google Scholar 

  46. Torre, P., Aliakbarian, B., Rivas, B., Domínguez, J. M., & Converti, A. (2008). Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochemical Engineering Journal, 40, 500–506.

    Article  CAS  Google Scholar 

  47. Gianfreda, L., Xu, F., & Bollag, J.-M. (1999). Laccases: a useful group of oxidoreductive enzymes. Bioremediation Journal, 3, 1–26.

    Article  CAS  Google Scholar 

  48. Maeda, R. N., Serpa, V. I., Rocha, V. A. L., Mesquita, R. A. A., Anna, L. M. M. S., de Castro, A. M., et al. (2011). Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 46, 1196–1201.

    Article  CAS  Google Scholar 

  49. Chen, Y., Dong, B., Qin, W., & Xiao, D. (2010). Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresource Technology, 101, 6994–6999.

    Article  CAS  Google Scholar 

  50. Zhang, Q., & Cai, W. (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 32, 1130–1135.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China, Scientific Technology Program of Zhejiang Province (2011C33016) and the Special Funds for Major State Basic Research Program of China (973 Program, 2007CB707805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Jing Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HY., Xue, DS., Feng, XY. et al. Screening and Production of Ligninolytic Enzyme by a Marine-Derived Fungal Pestalotiopsis sp. J63. Appl Biochem Biotechnol 165, 1754–1769 (2011). https://doi.org/10.1007/s12010-011-9392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9392-y

Keywords

Navigation