Skip to main content
Log in

Influence of Blocking of 2,3-Butanediol Pathway on Glycerol Metabolism for 1,3-Propanediol Production by Klebsiella oxytoca

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Glycerol metabolism is a typical biological oxidoreductive reaction. 1,3-Propanediol (1,3-PD) is the final product of the reductive branch, while acetate, succinate, lactate, 2,3-butanediol (2,3-BD), and ethanol were produced in the oxidative branch. 2,3-BD, which has similar properties of high boiling point and water solubility with 1,3-PD, not only contests the carbon flow and NADH with 1,3-PD but also serves as an obstacle for obtaining high purity 1,3-PD in downstream processes. In this study, a 2,3-BD pathway-deficient mutant of Klebsiella oxytoca ZG36 was constructed by knocking out the budA gene of the wild-type strain M5al. The results of fed-batch fermentation by ZG36 indicated that the glycerol flux and the distribution of metabolites were altered in the K. oxytoca when the 2,3-BD pathway was blocked. No 2,3-BD was produced, and the activity of α-acetolactate decarboxylase (α-ALDC) can not be detected in the fermentation processes. The indexes of the 1,3-PD titer, the conversion from glycerol to 1,3-PD, and the productivity per cell dry weight (CDW) increased by 42%, 62%, and 46%, respectively, compared with the M5al, and the yield of the byproducts also increased obviously. The assay of the enzyme activities in the oxidative branch and the reductive branch of the glycerol metabolism, as well as the intracellular redox state, exposited the results logically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Celińska, C. (2010). Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnology Advances, 28, 519–530.

    Article  Google Scholar 

  2. Da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27, 30–39.

    Article  Google Scholar 

  3. Zeng, A. P., & Biebl, H. (2002). Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, 74, 239–259.

    Article  CAS  Google Scholar 

  4. Homann, T., Tag, C., Biebl, H., & Dechwer, W. D. (1990). Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Applied Microbiology and Biotechnology, 33, 121–126.

    Article  CAS  Google Scholar 

  5. Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 52, 289–297.

    Article  CAS  Google Scholar 

  6. Zeng, A. P., Biebl, H., Schlieker, H., & Deckwer, W. D. (1993). Pathway analysis of glycerol fermentation by Klebsiella pneumoniae: regulation of reducing equivalent balance and product formation. Enzyme and Microbial Technology, 15, 770–779.

    Article  CAS  Google Scholar 

  7. Ahrens, K., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuoous culture: III, Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnology and Bioengineeing, 59, 544–552.

    Article  CAS  Google Scholar 

  8. Yang, G., Tian, J. S., & Li, J. L. (2007). Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Applied Microbiology and Biotechnology, 73, 1017–1024.

    Article  CAS  Google Scholar 

  9. Xu, Y. Z., Guo, N. N., Zheng, Z. M., Ou, X. J., Liu, H. J., & Liu, D. H. (2009). Metabolism in 1,3-propanediol fed-batch fermentation by d-lactate deficient mutant of Klebsiella pneumoniae. Biotechnology and Bioengineering, 104(5), 1–8.

    Article  Google Scholar 

  10. Zhang, Y. P., Li, Y., Du, C. Y., Liu, M., & Cao, Z. A. (2006). Inactivation of aldehyde dehydrogenase: a key factor for engineering 1,3-propanediol by Klebsiella pneumoniae. Metabolic Engineering, 8, 578–586.

    Article  CAS  Google Scholar 

  11. Horng, Y. T., Chang, K. C., Chou, T. C., Yu, C. J., Chien, C. C., Wei, Y. H., et al. (2010). Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae. Journal of Industrial Microbiology and Biotechnology, 37(7), 707–716.

    Article  CAS  Google Scholar 

  12. Seo, M. Y., Seo, J. W., Heo, S. Y., Baek, J. O., Rairakhwada, D., Oh, B. R., et al. (2009). Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Applied Microbiology and Biotechnology, 84, 527–534.

    Article  CAS  Google Scholar 

  13. Xiu, Z. L., & Zeng, A. P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Applied Microbiology and Biotechnology, 78, 917–926.

    Article  CAS  Google Scholar 

  14. Blomqvist, K., Nikkola, M., Lehtovaara, P., Suihko, M. L., Airaksinen, U., Straby, K. B., et al. (1993). Characterization of the genes of the 2,3-BD operons from Klebsiella terrigena and Enterobacter aerogenes. Journal of Bacteriology, 175(5), 1392–1404.

    CAS  Google Scholar 

  15. Wood, B. E., Yomano, L. P., York, S. W., & Ingram, L. O. (2005). Development of industrial-medium-required elimination of the 2,3-BD fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnology Progress, 21, 1366–1372.

    Article  CAS  Google Scholar 

  16. Ohta, K., Beall, D. S., Mejia, J. P., Shanmugam, K. T., & Ingram, L. O. (1991). Metabolic engineering of Klebsiella oxytoca M5al for ethanol production from xylose and glucose. Applied and Evironmental Microbiology, 157, 1810–1815.

    Google Scholar 

  17. Günel, B., Yonsel, S., & Deckwer, W. D. (1991). Fermentation production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Applied Microbiology and Biotechnology, 36, 289–295.

    Google Scholar 

  18. Schweizer, H. D. (1993). Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. BioTechniques, 15(5), 831–834.

    CAS  Google Scholar 

  19. Zhao, D. H., & Li, J. L. (2004). Construction and characterization of double mutants in nitrogenase of Klebsiella pneumoniae. Chinese Science Bulletin, 49, 1807–1713.

    Google Scholar 

  20. Miller, V. L., & Mekalanos, J. J. (1988). A novel suicide vector and its use in construction of insertion mutation: osmoregulation of outer membrane proteins and virulence determinants in Vibrio Cholerae requires toxR. Journal of Bacteriology, 170, 2572–2583.

    Google Scholar 

  21. Zheng, Z. M., Xu, Y. Z., Liu, H. J., Guo, N. N., Cai, Z. Z., & Liu, D. H. (2008). Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnology and Bioengineering, 100(5), 923–932.

    Article  CAS  Google Scholar 

  22. Olsen, F., & K, Aunstrup. December 1984. Denmark patent, EP 0128714.

  23. Phalip, V., Monnet, C., Schmitt, P., Renault, P., Godon, J. J., & Diviès, C. (1994). Purification and properties of the α-actolactate debocarboxylase from Lactococcus lactis subsp. lactis NCDO 2118. FEBS Letters, 351, 95–99.

    Article  CAS  Google Scholar 

  24. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Du, C. Y., Zhang, Y. P., Li, Y., & Cao, Z. A. (2007). Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability. Applied and Environmental Microbiology, 73(14), 4515–4521.

    Article  CAS  Google Scholar 

  26. Menzel, K., Ahrens, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzyme and fluxes of pyruvate metabolism. Biotechnology and Bioengineering, 60(5), 617–626.

    Article  CAS  Google Scholar 

  27. Ma, B. B., Xu, X. L., Zhang, G. L., Wang, L. W., Wu, M., & Li, C. (2009). Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration strategies. Applied Biochemistry and Biotechnology, 152, 127–134.

    Article  CAS  Google Scholar 

  28. Zhao, L., Zheng, Y., Ma, X. Y., & Wei, D. Z. (2009). Effects of overexpression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Bioprocess and Biosystems Engineering, 32, 313–320.

    Article  CAS  Google Scholar 

  29. Hao, J., Wang, W., Tian, J. S., Li, J. L., & Liu, D. H. (2008). Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneunoniae TUAC01. Journal of Industrial Microbiology and Biotechnology, 35, 735–741.

    Article  CAS  Google Scholar 

  30. Zhang, Y. P., Huang, Z. H., Du, C. Y., Li, Y., & Cao, Z. A. (2009). Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metabolic Engineering, 11, 101–106.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30900029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang Yang or Jilun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Yang, G., Wang, X. et al. Influence of Blocking of 2,3-Butanediol Pathway on Glycerol Metabolism for 1,3-Propanediol Production by Klebsiella oxytoca . Appl Biochem Biotechnol 168, 116–128 (2012). https://doi.org/10.1007/s12010-011-9363-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9363-3

Keywords

Navigation