Skip to main content

Advertisement

Log in

Heat conduction in an orthotropic material–numerical analysis using python

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The grain structure deforms once a material is subjected to rolling and due to the same the properties get affected especially the thermal properties resulting in orthotropic thermo-physical property. So, for a high hardness material for example, Ti–6Al–4 V requires extensive study as these are exclusively used as replacement in human body like, implants. The study also ensures proper fitment and longevity. Now, since a considerable quantity of heat is generated while machining of these materials hence, to formulate the cooling strategy, deep understanding of the temperature – distribution becomes very essential. Moreover, it also controls the thermo–physical characteristics of the aforesaid hard materials. The present work numerically estimates the temperature distribution assuming 2D material domain. To achieve the objective, Finite Difference Scheme has been used using Python. The mathematical equations relevant to heat transfer along with relevant boundary conditions have been discretized and iterative method has been employed for the solution. The various thermo–physical properties have been explicitly depicted with the aid of 2D temperature distribution plots. The conclusion of the work can be employed for deciding the cooling strategies and also various machining parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. https://www.sports-health.com/sports-injuries/hand-and-wrist-injuries/surgical-options-treating-distal-radius-fracture

  2. Roy A.K, Kumar K (2019) Sustainability in bio-metallic orthopedic implants. biointerface Research in Applied Chemistry. 9 (1), 3825 – 3829. https://doi.org/10.33263/BRIAC91.825829

  3. Markarian, R.A., Galles, D.P., França, F.M.G.: Dental implant-abutment fracture resistance and wear induced by single-unit screw-retained CAD components fabricated by four CAM methods after mechanical cycling. J. Prosthet. Dent. (2021). https://doi.org/10.1016/j.prosdent.2020.08.052

    Article  Google Scholar 

  4. Mruthunjaya, M., Yogesha, K.B.: A review on conventional and thermal assisted machining of titanium based alloy. Mater. Today: Proceed. 46, 8466–8472 (2021). https://doi.org/10.1016/j.matpr.2021.03.490

    Article  Google Scholar 

  5. Agrawal, C., Khanna, N., Gupta, M.K., Kaynak, Y.: Sustainability assessment of in-house developed environment-friendly hybrid techniques for turning Ti–6Al–4V. Sustain. Mater. Technol. 26, e00220 (2020). https://doi.org/10.1016/j.susmat.2020.e00220

    Article  Google Scholar 

  6. Dhal, A.K., Panda, A., Kumar, R., Sahoo, A.K.: Different machining environments impact analysis for Ti-6Al-4V alloy (Grade 5) turning process: A scoping review. Mater. Today: Proceed. 44, 2342–2347 (2021). https://doi.org/10.1016/j.matpr.2020.12.432

    Article  Google Scholar 

  7. Ma, Y., Du, Z., Cui, X., Cheng, J., Liu, G., Gong, T., Liu, H., Wang, X., Chen, Y.: Effect of cold rolling process on microstructure and mechanical properties of high strength β titanium alloy thin sheets. Progress in Nat. Sci: Mater Inter. 28(6), 711–717 (2018). https://doi.org/10.1016/j.pnsc.2018.10.004

    Article  Google Scholar 

  8. Duan, X., Wang, M., Jia, D., Jing, N., Wu, Z., Yang, Z., Tian, Z., Wang, S., He, P., Wang, Y., Zhou, Y.: Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics. Mater. Sci. Eng., A 607, 38–43 (2014). https://doi.org/10.1016/j.msea.2014.03.132

    Article  Google Scholar 

  9. Kumar S,. Khan M.A. Muralidharan B. Processing of Titanium-Based Human Implant. Material using Wire EDM. Mater. Manuf. Process. 34(6), 695-700, (2019). DOI: https://doi.org/10.1080/10426914.2019.1566609

  10. Liang, C., Zhao, J.F., Chang, J., Wang, H.P.: Microstructure evolution and nano-hardness modulation of rapidly solidified Ti–Al–Nb alloy. J. Alloy. Compd. 836, 155538 (2020). https://doi.org/10.1016/j.jallcom.2020.155538

    Article  Google Scholar 

  11. Khanna, N., Shah, P., López de Lacalle, L.N., Rodríguez, A., Pereira, O.: In pursuit of sustainable cutting fluid strategy for machining Ti–6Al–4V using life cycle analysis. Sustain. Mater. Technol. 29, e00301 (2021). https://doi.org/10.1016/j.susmat.2021.e00301

    Article  Google Scholar 

  12. Thirumaleshwar M, Fundamentals of Heat and Mass Transfer, 1st ed., Pearson Education India 2009.

  13. Aghaee-Shalmani, Y., Hakimzadeh, H.: Numerical Modeling of 2-D and 3-D Flows using Artificial Compressibility Method and Collocated Mesh. J Appl. Fluid Mechanics 9(7), 2333–2345 (2016). https://doi.org/10.18869/acadpub.jafm.68.236.21800

    Article  Google Scholar 

  14. Kara, S., Zhang, J.: Convergence and performance of iterative methods for solving variable coefficient convection-diffusion equation with a fourth-order compact difference scheme. Comput. Math. Appl. 44, 457–479 (2002). https://doi.org/10.1016/S0898-1221(02)00162-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Mishra, T.N.: Analytical Solution of 2D Spl Heat Conduction Model. Int. j. latest res. 1(4), 47–54 (2015)

    Google Scholar 

  16. Shen, S., Dai, W., Cheng, J.: Fractional parabolic two-step model and its accurate numerical scheme for nanoscale heat conduction. J. Comput. Appl. Math. 375, 112812 (2020). https://doi.org/10.1016/j.cam.2020.112812

    Article  MathSciNet  MATH  Google Scholar 

  17. Iqbal, M., Stark, D., Gimperlein, H., Mohamed, M.S., Laghrouche, O.: Local adaptive. q -enrichments and generalized finite elements for transient heat diffusion problems. Comput.Methods Appl. Mech. Eng. 372, 113359 (2020). https://doi.org/10.1016/j.cma.2020.113359

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis, B. J., Nihan Onder, E., Prudil, Andrew A.: Difference numerical methods. In: Advanced Mathematics for Engineering Students, pp. 165–188. Elsevier (2022). https://doi.org/10.1016/B978-0-12-823681-9.00014-9

    Chapter  Google Scholar 

  19. Wang, S., Ni, R.: Solving of two-dimensional unsteady-state heat-transfer inverse problem using finite difference method and model prediction control method. Complexity 2019, 1–12 (2019). https://doi.org/10.1155/2019/7432138

    Article  Google Scholar 

  20. Kovtanyuk, A.E., Chebotarev, A.Y.: An Iterative Method for Solving a Complex Heat Transfer Problem. Appl. Math. Comput. 219(17), 9356–9362 (2013). https://doi.org/10.1016/j.amc.2013.03.091

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam, T.T., Fong, E.: Application of solution structure theorem to non-fourier heat conduction problems: analytical approach. Int. J. Heat Mass Transf. 54(23–24), 4796–4806 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.028

    Article  MATH  Google Scholar 

  22. Lam, T.T.: A unified solution of several heat conduction models. Int. J. Heat Mass Transf 56, 653–666 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.055

    Article  Google Scholar 

  23. Woodbury, K.A., Najafi, H., Beck, J.V.: Exact analytical solution for 2-D transient heat conduction in a rectangle with partial heating on one edge. Int. J. Therm. Sci. 112, 250–262 (2017). https://doi.org/10.1016/j.ijthermalsci.2016.10.014

    Article  Google Scholar 

  24. Koh Y.Y, Lim J.W.S and. Chua Y.L, Multigrid Solver for 2D Heat Conduction Problems. AIP Conference Proceedings. 2129, 020033 – 1 – 020033 – 6, (2019). https://doi.org/10.1063/1.5118041.

  25. Nemirovsky, Y.V., Mozgova, A.S.: two-dimensional steady-state heat conduction problem for heat networks. J. Phys.: Conference Series 1359(1), 012138 (2019). https://doi.org/10.1088/1742-6596/1359/1/012138

    Article  Google Scholar 

  26. Hu, Z., Liu, Z.: Heat Conduction Simulation of 2D Moving Heat Source Problems Using a Moving Mesh Method. Adv. Math. Phys. 6067854, 1–16 (2020). https://doi.org/10.1155/2020/6067854

    Article  MathSciNet  MATH  Google Scholar 

  27. Fong Ed, Yi S. Lam T.T Heating and Convective Cooling of Two-Dimensional Solids Using Diffusion and Cattaneo–Vernotte Models. J. Thermophys Heat Transf. 1–12, (2021). DOI: https://arc.aiaa.org/doi/pdf/https://doi.org/10.2514/1.T6255.

  28. Udoye, N.E., Okolie, S.T.A., Fayomi, O.S.I., Banjo, S.O.: Computational analysis of conductive heat transfer in a rectangular slab of stable boundary using Monte Carlo method. IOP Confer Series: Mater. Sci. Eng. 1036(1), 012059 (2021). https://doi.org/10.1088/1757-899X/1036/1/012059

    Article  Google Scholar 

  29. Adsul, P. P., Dineshkumar, L.: On code verification of 2D transient heat conduction in composite wall. IOP Conference Series: Mater. Sci. Eng. 377, 012128 (2018). https://doi.org/10.1088/1757-899X/377/1/012128

    Article  Google Scholar 

  30. Roy, A Kumar, Kumar, Kaushik: 2D heat conduction on a flat plate with Ti6Al4V alloy under steady state conduction: A numerical analysis. Mater. Today: Proceedings 46, 896–902 (2021). https://doi.org/10.1016/j.matpr.2020.12.1152

    Article  Google Scholar 

  31. Roy, A.K., Jeyapandiarajan, P., Kumar, K.: Numerical and Thermal Modelling of Machining Implants: A case with Ti6Al4V alloy with unsteady heat diffusion. Mater. Today: Proceed. (2021). https://doi.org/10.1016/j.matpr.2021.02.145

    Article  Google Scholar 

  32. Bassam, A.: Abu-Hijleh, Numerical Solution of Periodic Heat Transfer in an Anisotropic Cylinder Subject to Asymmetric Temperature Distribution, Journal of King Saud University -. Eng. Sci. 9(2), 265–292 (1997). https://doi.org/10.1016/S1018-3639(18)30681-0

    Article  Google Scholar 

  33. Atchonouglo K., Jean-Christophe Dupré, Germaneau A, Vallée C., Numerical identification of the thermal conductivity tensor and the heat capacity per unit volume of an anisotropic material. Mech. Industry, 20(6), 603, (2019). https://doi.org/10.1051/meca/2019026

  34. Tahmasbi, V., Noori, S.: Multidimensional Numerical Analysis of the Thermal Behavior and Pyrolysis Gas Flow Inside an Orthotropic Porous Material. ASME. J. Heat Transfer. 142(6), 062701 (2020). https://doi.org/10.1115/1.4046890

    Article  Google Scholar 

  35. Mishra, R.R., Kumar, R., Sahoo, A.K., Panda, A.: Machinability behaviour of biocompatible Ti–6Al–4V ELI titanium alloy under flood cooling environment. Materials Today: Proceedings. 23(3), 536–540 (2020). https://doi.org/10.1016/j.matpr.2019.05.402

    Article  Google Scholar 

  36. Ranjan, A., Kumar, A., Roy, A.K., Kumar, K.: Python assisted numerical analysis of heat conduction for an orthotropic material. Advances in Materials and Processing Technologies. (2022). https://doi.org/10.1080/2374068X.2022.2031561

    Article  Google Scholar 

  37. Özisik, M.N.: Heat Conduction, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  38. Özişik M.N, Orlande H.R.B, Colaço M.J and. Cotta R.M, Finite Difference Methods in Heat Transfer, 2nd ed. CRC Press, 2017. DOI: https://doi.org/10.1201/9781315121475.

  39. Sameti, Md., Fatemeh, R.A., Fathollah, P., Alibakhsh, K.: Analytical and FDM Solutions for Anisotropic Heat Conduction in an Orthotropic Rectangular. Am J. Num. Anal.. 2(2), 65–68 (2014)

    Google Scholar 

  40. Kreyszig E, Advanced Engineering Mathematics, 10th eds. John Wiley & Sons Inc, New York 2010

Download references

Acknowledgements

The authors sincerely acknowledge the comments and suggestions of the reviewer(s) and editor(s) that have been instrumental for improving and upgrading the paper in its final form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Roy, A.K. & Kumar, K. Heat conduction in an orthotropic material–numerical analysis using python. Int J Interact Des Manuf 17, 1089–1097 (2023). https://doi.org/10.1007/s12008-022-01051-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-022-01051-4

Keywords

Navigation