Skip to main content

Advertisement

Log in

Layer-by-layer films based on polyaniline, titanate nanotubes, and cetyl trimethyl ammonium bromide for antifungal coatings

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

Layer-by-layer (LbL) films have been developed for multiple applications, including functional coatings with antimicrobial activity. In this work, we describe the development of LbL films based on polyaniline (PANI), titanate nanotubes (TiNTs-Na2Ti3O7), and cetyl trimethyl ammonium bromide (CTAB) for applications in antifungal coatings. The LbL films were characterized by spectroscopy in the UV–visible region, cyclic voltammetry, scanning electron microscopy, and atomic force microscopy. Among various films architectures tested, the PANI(TiNTs)/CTAB film was more promising for the suggested applications. This film showed excellent activity against Cryptococcus neoformans fungi, showing inhibition zones. The material developed in this work is a candidate for coating of air conditioning pipes, for instance, since besides the antifungal activity, it also adds the anticorrosive and air-purifying properties present in PANI and TiNTs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crespilho, FN, Zucolotto, V, Oliveira, ON, Jr, Nart, FC, “Electrochemistry of Layer-by-Layer Films: A Review.” Int. J. Electrochem. Sci., 1 194–214 (2006)

    Google Scholar 

  2. Kruk, T, Szczepanowicz, K, Kręgiel, D, Szyk-Warszyńska, L, Warszyński, P, “Nanostructured Multilayer Polyelectrolyte Films with Silver Nanoparticles as Antibacterial Coatings.” Colloids Surf. B, 137 158–166 (2016). https://doi.org/10.1016/j.colsurfb.2015.06.016

    Article  Google Scholar 

  3. Soltani, I, Smith, SD, Spontak, RJ, “Effect of Polyelectrolyte on the Barrier Efficacy of Layer-by-Layer Nanoclay Coatings.” J. Membr. Sci., 526 172–180 (2017). https://doi.org/10.1016/j.memsci.2016.12.022

    Article  Google Scholar 

  4. André, RS, Shimizu, FM, Miyazaki, CM, Riul, A, Jr, Manzani, D, Ribeiro, SJL, Oliveira, ON, Jr, Mattoso, LHC, Correa, DS, “Hybrid Layer-by-Layer (LbL) Films of Polyaniline, Graphene Oxide and Zinc Oxide to Detect Ammonia.” Sens. Actuators B Chem., 238 795–801 (2017). https://doi.org/10.1016/j.snb.2016.07.099

    Article  Google Scholar 

  5. Anandhakumar, S, Gokul, P, Raichur, AM, “Stimuli-Responsive Weak Polyelectrolyte Multilayer Films: A Thin Film Platform for Self Triggered Multi-drug Delivery.” Mater. Sci. Eng. C, 58 622–628 (2016). https://doi.org/10.1016/j.msec.2015.08.039

    Article  Google Scholar 

  6. Srivastava, S, Kotov, NA, “Composite Layer-by-Layer (LbL) Assembly with Inorganic Nanoparticles and Nanowires.” Acc. Chem. Res., 4 1831–1841 (2008). https://doi.org/10.1021/ar8001377

    Article  Google Scholar 

  7. Soares, MFC, Farias, EAO, Silva, DA, Eiras, C, “Development and Characterization of Hybrid Films Based on Agar and Alizarin Red S for Applications as Non-enzymatic Sensors for Hydrogen Peroxide.” J. Mater. Sci., 51 7093–7107 (2016). https://doi.org/10.1007/s10853-016-9958-8

    Article  Google Scholar 

  8. Bittencourt, CR, Farias, EAO, Bezerra, KC, Véras, LMC, Silva, VC, Costa, CHN, Bemquerer, MP, Silva, LP, Leite, JR, De, SA, Eiras, C, “Immobilization of Cationic Antimicrobial Peptides and Natural Cashew Gum in Nanosheet Systems for the Investigation of Anti-leishmanial Activity.” Mater. Sci. Eng. C, 59 549–555 (2016). https://doi.org/10.1016/j.msec.2015.10.059

    Article  Google Scholar 

  9. De Villiers, MM, Otto, DP, Strydom, SJ, Lvov, YM, “Introduction to Nanocoatings Produced by Layer-by-Layer (LbL) Self-Assembly.” Adv. Drug Deliv. Rev., 63 701–715 (2011). https://doi.org/10.1016/j.addr.2011.05.011

    Article  Google Scholar 

  10. Farias, EAO, Dionisio, NA, Quelemes, PV, Leal, SH, Matos, JME, Filho, ECS, Bechtold, IH, Leite, JRSA, Eiras, C, “Development and Characterization of Multilayer Films of Polyaniline, Titanium dioxide and CTAB for Potential Antimicrobial Applications.” Mater. Sci. Eng. C, 35 449–454 (2014). https://doi.org/10.1016/j.msec.2013.11.002

    Article  Google Scholar 

  11. Morgado, E, Jr, de Abreu, MAS, Praiva, ORC, Marinkovic, BA, Jardim, PM, Rizzo, FC, Araújo, AS, “A Study on the Structure and Thermal Stability of Titanate Nanotubes as a Function of Sodium Content.” Solid State Sci., 8 888–900 (2006). https://doi.org/10.1016/j.solidstatesciences.2006.02.039

    Article  Google Scholar 

  12. Ranjitha, A, Muthukumarasamy, N, Thambidurai, M, Velauthapillai, D, Agilan, S, Balasundaraprabhu, R, “Effect of Reaction Time on the Formation of TiO2 Nanotubes Prepared by Hydrothermal Method.” Optik, 126 2491–2494 (2015). https://doi.org/10.1016/j.ijleo.2015.06.022

    Article  Google Scholar 

  13. Akimoto, M, Toyoda, T, Okuno, T, Hayase, S, Shen, Q, “Effect of Defects in TiO2 Nanotube Thin Film on the Photovoltaic Properties of Quantum Dot-Sensitized Solar Cells.” Thin Solid Films, 590 90–97 (2015). https://doi.org/10.1016/j.tsf.2015.07.038

    Article  Google Scholar 

  14. Sun, MC, Liang, JB, Peng, WQ, Wang, ZM, Negishi, N, Koike, K, Chu, YH, Yin, HQ, “Photocatalytic Properties of Fresh and Pyrolyzed Transparent Nanocomposite Films Layer-by-Layer Fabricated from Alternative Layers of Graphene and Titanate Nanotube.” Mater. Sci. Semicond. Process., 40 954–963 (2015)

    Article  Google Scholar 

  15. Jin, M, Yao, S, Wang, L-N, Qiao, Y, Volinsky, AA, “Enhanced Bond Strength and Bioactivity of Interconnected 3D TiO2 Nanoporous Layer on Titanium Implants.” Surf. Coat Technol., 304 459–467 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.038

    Article  Google Scholar 

  16. Wang, Q, Huang, J, Li, H, Zhao, AZ, Wang, Y, Zhang, K, Sun, H, Lai, Y, “Recent Advances on Smart TiO2 Nanotube Platforms for Sustainable Drug Delivery Applications.” Int. J. Nanomed., 12 151–165 (2017). https://doi.org/10.2147/ijn.s117498

    Article  Google Scholar 

  17. Pichat, P, “Are TiO2 Nanotubes Worth Using in Photocatalytic Purification of Air and Water?” Molecules, 19 15075–15087 (2014). https://doi.org/10.3390/molecules190915075

    Article  Google Scholar 

  18. Jennings, MC, Minbiole, KPC, Wuest, WM, “Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance.” ACS Infect. Dis., 1 288–303 (2015). https://doi.org/10.1021/acsinfecdis.5b00047

    Article  Google Scholar 

  19. Vieira, DB, Ribeiro, AMC, “Cationic Lipids and Surfactants as Antifungal Agents: Mode of Action.” J. Antimicrob. Chemother., 58 760–767 (2006). https://doi.org/10.1093/jac/dkl312

    Article  Google Scholar 

  20. Cafarchia, C, Romito, D, Iatta, R, Camarda, A, Montagna, MT, Otranto, D, “Role of Birds of Prey as Carriers and Spreaders of Cryptococcus Neoformans and Other Zoonotic Yeasts.” Med. Mycol., 44 485–492 (2006). https://doi.org/10.1080/13693780600735452

    Article  Google Scholar 

  21. Botard, RW, Kelley, DC, “A Survey to Determine the Occurrence of Histoplasma Capsulatum and Cryptococcus Neoformans in Air-Conditioners.” Mycopathologia, 37 372–376 (1969)

    Google Scholar 

  22. Khan, HA, Baig, FK, Mehboob, R, “Nosocomial Infections: Epidemiology, Prevention, Control and Surveillance.” Asian Pac. J. Trop. Biomed., 7 478–482 (2017). https://doi.org/10.1016/j.apjtb.2017.01.019

    Article  Google Scholar 

  23. Mattoso, LHC, “Polianilinas: Síntese, Estrutura e Propriedades.” Quim. Nova, 19 388–398 (1996)

    Google Scholar 

  24. Kasuga, T, Hiramatsu, M, Hoson, A, Sekino, T, Niihara, K, “Formation of Titanium Oxide Nanotube.” Langmuir, 14 3160–3163 (1998). https://doi.org/10.1021/la9713816

    Article  Google Scholar 

  25. Kern, W, “Purifying Si and SiO2 Surfaces with Hydrogen Peroxide.” Semicond. Int., 7 94–99 (1984)

    Google Scholar 

  26. Manual Clinical and Laboratory Standards Institute, CLSI (2009)

  27. Zhang, H, Banfield, JF, “Understanding Polymorphic Phase Transformation Behavior During Growth of Nanocrystalline: Insights from TiO2.” J. Phys. Chem. B, 104 3481–3487 (2000). https://doi.org/10.1021/jp000499j

    Article  Google Scholar 

  28. Morgan, DL, Liu, HW, Frost, RL, Waclawik, ER, “Implications of Precursor Chemistry on the Alkaline Hydrothermal Synthesis of Titania/Titanate Nanostructures.” J. Phys. Chem. C, 114 101–110 (2010). https://doi.org/10.1021/jp908508z

    Article  Google Scholar 

  29. Viana, BC, Ferreira, OP, Filho, AGS, Filho, JM, Alves, OL, “Structural, Morphological and Vibrational Properties of Titanate Nanotubes and Nanoribbons.” J Brazil Chem. Soc., 20 167–175 (2009). https://doi.org/10.1590/S0103-50532009000100025

    Article  Google Scholar 

  30. Skoog, DA, Holler, FJ, Princípios de Análise Instrumental, 5th ed. Bookman, Porto Alegre (2002)

    Google Scholar 

  31. Fu, Y, Weiss, RA, “Protonation of Polyaniline with Lightly Sulfonated Polystyrene.” Synth. Met., 84 103–104 (1997). https://doi.org/10.1016/S0379-6779(97)80667-4

    Article  Google Scholar 

  32. Kavitha, B, Prabakar, K, Siva Kumar, K, Srinivasu, D, Srinivas, Ch, Aswal, VK, Siriguri, V, Narsimlu, N, “Spectroscopic Studies of Nano Size Crystalline Conducting Polyaniline.” IOSR-JAC, 2 16–19 (2012)

    Article  Google Scholar 

  33. Niu, Hongyun, Cai, Yaqi, Shi, Yali, Wei, Fusheng, Mou, Shifen, Jiang, Guibin, “Cetyltrimethylammonium Bromide-Coated Titanate Nanotubes for Solid-Phase Extraction of Phthalate Esters from Natural Waters Prior to High-Performance Liquid Chromatography Analysis.” J. Chromatogr., 1172 (2) 113–120 (2007)

    Article  Google Scholar 

  34. Xiao, Deli, Zhang, Chan, He, Jia, Zeng, Rong, Chen, Rong, He, Hua, “Platform Construction and Extraction Mechanism Study of Magnetic Mixed Hemimicelles Solid-Phase Extraction.” Sci. Rep., 6 38106 (2016)

    Article  Google Scholar 

  35. Yoshioka, NA, Rocha, HLR, Cazati, T, Manhabosco, TM, Müller, IL, “Pulsed Electrodeposition of Polyaniline Films Used as Photogenerated Charge Transporting Layers in Organic Photovoltaic Devices.” Polímeros, 24 88–93 (2014). https://doi.org/10.4322/polimeros.2013.061

    Article  Google Scholar 

  36. Meftah, AM, Gharibshahi, E, Soltani, N, Yunus, WMM, Saion, E, “Structural, Optical and Electrical Properties of PVA/PANI/Nickel Nanocomposites Synthesized by Gamma Radiolytic Method.” Polymers, 6 2435–2450 (2014). https://doi.org/10.3390/polym6092435

    Article  Google Scholar 

  37. Li, X, Tian, S, Yang, P, Kim, DH, Knoll, W, “One-Step Route to the Fabrication of Highly Porous Polyaniline Nanofiber Films by Using PS-b-PVP Diblock Copolymers as Templates.” Langmuir, 21 9393–9397 (2005). https://doi.org/10.1021/la0514009

    Article  Google Scholar 

  38. Eaton, P, West, P, Atomic Force Microscopy. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  39. Kugler, R, Bouloussa, O, Rondelez, F, “Evidence of a Charge Density Threshold for Optimum Efficiency of Biocidal Cationic Surfaces.” Microbiology, 151 1341–1348 (2005). https://doi.org/10.1099/mic.0.27526-0

    Article  Google Scholar 

  40. Thome, J, Holländer, A, Jaeger, W, Trick, I, Oehr, C, “Ultrathin Antibacterial Polyammonium Coatings on Polymer Surfaces.” Surf. Coat. Technol., 174–175 584–587 (2003). https://doi.org/10.1016/S0257-8972(03)00703-5

    Article  Google Scholar 

  41. Vieira, DB, Carmona-Ribeiro, AM, “Cationic Lipids and Surfactants as Antifungal Agents: Mode of Action.” J. Antimicrob. Chemother., 58 760–767 (2006). https://doi.org/10.1093/jac/dkl312

    Article  Google Scholar 

  42. Urrutia, A, Rivero, PJ, Ruete, L, Goicoechea, J, Fernandéz-Valdivieso, C, Arregui, FJ, Matias, IR, “An Antibacterial Surface Coating Composed of PAH/SiO2 Nanostructurated Films by Layer by Layer.” Phys. Status Solidi C, 7 (11–12) 2774–2777 (2010). https://doi.org/10.1002/pssc.200983820

    Article  Google Scholar 

  43. Fabra, MJ, Flores-Lopéz, ML, Cerqueira, MA, Rodriguez, DJ, Lagaron, JM, Vicent, AA, “Layer-by-Layer Technique to Developing Functional Nanolaminate Films with Antifungal Activity.” Food Bioprocess Technol., 9 471–480 (2016). https://doi.org/10.1007/s11947-015-1646-1

    Article  Google Scholar 

  44. Raman, N, Marchillo, K, Lee, M-R, López, ALR, Andes, DR, Palecek, SP, Lynn, DM, “Intraluminal Release of an Antifungal β-Peptide Enhances the Antifungal and Anti-biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection.” ACS Biomater. Sci. Eng., 2 112–121 (2015). https://doi.org/10.1021/acsbiomaterials.5b00427

    Article  Google Scholar 

  45. Kraljic, M, Mandic, Z, Lj, Duic, “Inhibition of Steel Corrosion by Polyaniline Coatings.” Corros. Sci., 45 181–198 (2003). https://doi.org/10.1016/S0010-938X(02)00083-5

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to Coordination Support in Higher Education (CAPES), National Council for Scientific and Technological Development (CNPq) and the Foundation of Support to Research of Piauí (FAPEPI) for their financial support; the authors are grateful to Edgar Alves Araujo Junior (UFPI/CT/PPGCEM/LIMAV-LMMA) by SEM analysis. This work received financial support from the European Union (FEDER funds through COMPETE) and National Funds (FCT, Fundação para a Ciência e Tecnologia), under the Partnership Agreement PT2020 through project UID/QUI/50006/2013-POCI/01/0145/FEDER/007265 (LAQV/REQUIMTE), and from Programa Operacional Regional do Norte (ON.2—O Novo Norte), under the Quadro de Referência Estratégico Nacional (QREN) and funded by Fundo Europeu de Desenvolvimento Regional (Feder) NORTE-01-0145-FEDER-000011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Eiras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 308 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionisio, N.A., Farias, E.A.O., Marques, T.A. et al. Layer-by-layer films based on polyaniline, titanate nanotubes, and cetyl trimethyl ammonium bromide for antifungal coatings. J Coat Technol Res 16, 1253–1262 (2019). https://doi.org/10.1007/s11998-019-00199-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-019-00199-1

Keywords

Navigation