Skip to main content
Log in

Characteristics of nFOG, an aerosol-based wet thin film coating technique

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

An atmospheric pressure aerosol-based wet thin film coating technique called the nFOG is characterized and applied in polymer film coatings. In the nFOG, a fog of droplets is formed by two air-assist atomizers oriented toward each other inside a deposition chamber. The droplets settle gravitationally and deposit on a substrate, forming a wet film. In this study, the continuous deposition mode of the nFOG is explored. We determined the size distribution of water droplets inside the chamber in a wide side range of 0.1–100 µm and on the substrate using aerosol measurement instruments and optical microscopy, respectively. The droplet size distribution was found to be bimodal with droplets of approximately 30–50 µm contributing the most to the mass of the formed wet film. The complementary measurement methods allow us to estimate the role of different droplet deposition mechanisms. The obtained results suggest that the deposition velocity of the droplets is lower than the calculated terminal settling velocity, likely due to the flow fields inside the chamber. Furthermore, the mass flux of the droplets onto the substrate is determined to be in the order of 1 g/m3s, corresponding to a wet film growth rate of 1 µm/s. Finally, the nFOG technique is demonstrated by preparing polymer films with thicknesses in the range of approximately 0.1–20 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brinker, CJ, Frye, GC, Hurd, AJ, Ashley, CS, “Fundamentals of Sol–Gel Dip Coating.” Thin Solid Films, 201 (1) 97–108 (1991)

    Article  Google Scholar 

  2. Schweizer, PM, Kistler, SF (eds.), Liquid Film Coating: Scientific Principles and Their Technological Implications. Springer, London (1997)

    Google Scholar 

  3. Coeling, KJ, “Coating Processes, Spray Coating.” In: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 7, pp. 68–76. Wiley, Hoboken (2000)

  4. Norrman, K, Ghanbari-Siahkali, A, Larsen, NB, “Studies of Spin-Coated Polymer Films.” Annu. Rep. Prog. Chem. Sect. C, 101 174–201 (2005)

    Article  Google Scholar 

  5. Teisala, H, Tuominen, M, Kuusipalo, J, “Superhydrophobic Coatings On Cellulose-Based Materials: Fabrication, Properties, and Applications.” Adv. Mater. Interfaces, 1 (1) 1300026 (2014)

    Article  Google Scholar 

  6. Aegerter, MA, Puetz, J, Gasparro, G, Al-Dahoudi, N, “Versatile Wet Deposition Techniques for Functional Oxide Coatings.” Opt. Mater., 26 (2) 155–162 (2004)

    Article  Google Scholar 

  7. Lu, Y, Ganguli, R, Drewien, CA, Anderson, MT, Brinker, CJ, Gong, W, Guo, Y, Soyez, H, Dunn, B, Huang, MH, Zink, JI, “Continuous Formation of Supported Cubic and Hexagonal Mesoporous Films by Sol–Gel Dip-Coating.” Nature, 389 (6649) 364–368 (1997)

    Article  Google Scholar 

  8. Pham, VH, Cuong, VT, Hur, SH, Shin, EW, Kim, JS, Chung, JS, Kim, EJ, “Fast and Simple Fabrication of a Large Transparent Chemically-Converted Graphene Film by Spray-Coating.” Carbon, 48 (7) 1945–1951 (2010)

    Article  Google Scholar 

  9. Maenosono, S, Okubo, T, Yamaguchi, Y, “Overview of Nanoparticle Array Formation by Wet Coating.” J. Nanopart. Res., 5 (1) 5–15 (2003)

    Article  Google Scholar 

  10. Chen, D, “Anti-reflection (AR) Coatings Made by Sol–Gel Processes: A Review.” Sol. Energy Mater. Sol. Cells, 68 (3–4) 313–336 (2001)

    Article  Google Scholar 

  11. Sonawane, RS, Hegde, SG, Dongare, MK, “Preparation of Titanium(IV) Oxide Thin Film Photocatalyst by Sol–Gel Dip Coating.” Mater. Chem. Phys., 77 (3) 744–750 (2003)

    Article  Google Scholar 

  12. Chang, C-C, Pai, C-L, Chen, W-C, Jenekhe, SA, “Spin Coating of Conjugated Polymers for Electronic and Optoelectronic Applications.” Thin Solid Films, 479 (1–2) 254–260 (2005)

    Article  Google Scholar 

  13. Kreps, FC, “Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques.” Sol. Energy Mater. Sol. Cells, 93 (4) 394–412 (2009)

    Article  Google Scholar 

  14. Wang, D, Bierwagen, GP, “Sol–Gel Coatings on Metals for Corrosion Protection.” Prog. Org. Coat., 64 (4) 327–338 (2009)

    Article  Google Scholar 

  15. Cannavale, A, Fiorito, F, Manca, M, Tortorici, G, Cingolani, R, Gigli, G, “Multifunctional Bioinspired Sol-Gel Coatings for Architectural Glasses.” Build. Environ., 45 (5) 1233–1243 (2010)

    Article  Google Scholar 

  16. Nguyen, DD, Tai, N-H, Lee, S-B, Kuo, W-S, “Superhydrophobic and Superoleophilic Properties of Graphene-Based Sponges Fabricated Using a Facile Dip Coating Method.” Energy Environ. Sci., 5 (7) 7908–7912 (2012)

    Article  Google Scholar 

  17. Du, J, Harra, J, Virkki, M, Mäkelä, JM, Leng, Y, Kauranen, M, Kobayashi, T, “Surface-Enhanced Impulsive Coherent Vibrational Spectroscopy.” Sci. Rep., 6 36471 (2016)

    Article  Google Scholar 

  18. Tuominen, M, Järn, M, Tammela, S, “Mesoporous SiO2-Coatings on Glass by a Novel Aerosol Based Coating Method Called nFOG.” Proc. Aerosol Technology 2015, Tampere (2015). http://www.tut.fi/at2015/wp-content/uploads/Mesoporous-SiO2-coatings-on-glass-by-a-novel-aerosol-based-coating-method-called-nFOG.pdf

  19. Tammela, S, Boonen, J, Asikkala, K, Määttä, T, Rijk-de, R, Mennig, M, Meriläinen, P, ”Combination of nFOG and KhepriCoat Technologies to Deliver Superior Quality of Anti-Reflective Coating on Solar Cover Glass.” Proc. Glass Performance Days 2015, pp. 74–76. Tampere (2015)

  20. Murari, NM, Mansergh, RH, Huang, Y, Kast, MG, Keszler, DA, Conley, JF, “Aerosol Jet Fog (ajFOG) Deposition of Aluminum Oxide Phosphate Thin Films from an Aqueous Fog.” J. Mater. Res., 31 (21) 3303–3312 (2016)

    Article  Google Scholar 

  21. Asikkala, K, “Device and Method for Producing Aerosol.” WO Patent 2009080893, 2009

  22. Skillas, G, Maisels, A, Pratsinis, SE, Kodas, TT, “Manufacturing of Materials by Aerosol Processes.” In: Kulkarni, P, Baron, PA, Willeke, K (eds.) Aerosol Measurement: Principles, Techniques, and Applications, pp. 751–770. Wiley, Hoboken (2011)

    Chapter  Google Scholar 

  23. Harra, J, Kujanpää, S, Haapanen, J, Juuti, P, Mäkelä, JM, Hyvärinen, L, Honkanen, M, “Aerosol Analysis of Residual and Nanoparticle Fractions from Spray Pyrolysis of Poorly Volatile Precursors.” AIChE J., 63 (3) 881–892 (2017)

    Article  Google Scholar 

  24. Mäkelä, JM, Haapanen, J, Harra, J, Juuti, P, Kujanpää, S, “Liquid Flame Spray—A Hydrogen-Oxygen Flame Based Method for Nanoparticle Synthesis and Functional Nanocoatings.” KONA Powder Part. J., 34 141–154 (2017)

    Article  Google Scholar 

  25. Messing, GL, Zhang, SC, Jayanthi, GV, “Ceramic Powder Synthesis by Spray Pyrolysis.” J. Am. Ceram. Soc., 76 (11) 2707–2726 (1993)

    Article  Google Scholar 

  26. Harra, J, Nikkanen, J-P, Aromaa, M, Suhonen, H, Honkanen, M, Salminen, T, Heinonen, S, Levänen, E, Mäkelä, JM, “Gas Phase Synthesis of Encapsulated Iron Oxide–Titanium Dioxide Composite Nanoparticles by Spray Pyrolysis.” Powder Technol., 243 46–52 (2013)

    Article  Google Scholar 

  27. Berglund, RN, Liu, BYH, “Generation of Monodisperse Aerosol Standards.” Environ. Sci. Technol., 7 (2) 147–153 (1973)

    Article  Google Scholar 

  28. Keskinen, H, Aromaa, M, Heine, MC, Mäkelä, JM, “Size and Velocity Measurements in Sprays and Particle-Producing Flame Sprays.” Atomization Sprays, 18 (7) 619–644 (2008)

    Article  Google Scholar 

  29. Davies, SC, “The Entry of Aerosols into Sampling Tubes and Heads.” J. Phys. D, 1 (7) 921–932 (1968)

    Article  Google Scholar 

  30. Giechaskiel, B, Ntziachristos, L, Samaras, Z, “Calibration and Modelling of Ejector Dilutors for Automotive Exhaust Sampling.” Meas. Sci. Technol., 15 (11) 2199–2206 (2004)

    Article  Google Scholar 

  31. Haynes, WM (ed.) CRC Handbook of Chemistry and Physics, 97th Edition (Internet Version 2017). CRC Press/Taylor & Francis, Boca Raton (2017)

    Google Scholar 

  32. Wang, SC, Flagan, RC, “Scanning Electrical Mobility Spectrometer.” Aerosol Sci. Technol., 13 (2) 230–240 (1990)

    Article  Google Scholar 

  33. Keskinen, J, Pietarinen, K, Lehtimäki, M, “Electrical Low Pressure Impactor.” J. Aerosol Sci., 23 (4) 353–360 (1992)

    Article  Google Scholar 

  34. Sorensen, CM, Gebhart, J, O’Hern, TJ, Rader, DJ, “Optical Measurement Techniques: Fundamentals and Applications.” In: Kulkarni, P, Baron, PA, Willeke, K (eds.) Aerosol Measurement: Principles, Techniques, and Applications, pp. 269–312. Wiley, Hoboken (2011)

    Chapter  Google Scholar 

  35. Hinds, WC, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, New York (1999)

    Google Scholar 

  36. Juuti, P, Arffman, A, Rostedt, A, Harra, J, Mäkelä, JM, Keskinen, J, “Real-Time Effective Density Monitor (DENSMO) for Aerosol Nanoparticle Production.” Aerosol Sci. Technol., 50 (5) 487–496 (2016)

    Article  Google Scholar 

  37. Schneider, CA, Rasband, WS, Eliceiri, KW, “NIH Image to ImageJ: 25 Years of Image Analysis.” Nat. Methods, 9 (7) 671–675 (2012)

    Article  Google Scholar 

  38. Jaenicke, R, “The Optical Particle Counter: Cross-Sensitivity and Coincidence.” J. Aerosol Sci., 3 (2) 95–111 (1972)

    Article  Google Scholar 

  39. Liu, H, Science and Engineering of Droplets: Fundamentals and Applications. William Andrew Publishing, Norwich (1999)

    Google Scholar 

  40. Chin, LP, Switzer, G, Tankin, RS, Jackson, T, Stutrud, J, “Bi-Modal Size Distributions Predicted by Maximum Entropy are Compared with Experiments in Sprays.” Combust. Sci. Technol., 109 (1–6) 35–52 (1995)

    Article  Google Scholar 

  41. Juslin, L, Antikainen, O, Merkku, P, Yliruusi, J, “Droplet Size Measurement: I. Effect of Three Independent Variables on Droplet Size Distribution and Spray Angle from a Pneumatic Nozzle.” Int. J. Pharm., 123 (2) 247–256 (1995)

    Article  Google Scholar 

  42. Harari, R, Sher, E, “Bimodal Drop Size Distribution Behavior in Plain-Jet Airblast Atomizer Sprays.” Atomization Sprays, 8 (3) 349–362 (1998)

    Article  Google Scholar 

  43. Faeth, GM, Hsiang, L-P, Wu, P-K, “Structure and Breakup Properties of Sprays.” Int. J. Multiph. Flow, 21 99–127 (1995)

    Article  Google Scholar 

  44. Ashgriz, N, Poo, JY, “Coalescence and Separation in Binary Collisions of Liquid Drops.” J. Fluid Mech., 221 183–204 (1990)

    Article  Google Scholar 

  45. Pan, K-L, Chou, P-C, Tseng, Y-J, “Binary Droplet Collision at High Weber Number.” Phys. Rev. E, 80 (3) 036301 (2009)

    Article  Google Scholar 

  46. Majumder, M, Rendall, C, Li, M, Behabtu, N, Eukel, JA, Hauge, RH, Schmidt, HK, Pasquali, M, “Insights into the Physics of Spray Coating of SWNT Films.” Chem. Eng. Sci., 65 (6) 2000–2008 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by Tekes—the Finnish Funding Agency for Technology and Innovation, Arctech Helsinki Shipyard, Beneq, CH-Polymers, Stora Enso, UPM Raflatac, and VR-Yhtymä under the project on “Roll-to-roll fabrication of advanced slippery liquid-infused porous surfaces for anti-icing applications (ROLLIPS).” H.T. acknowledges Walter Ahlström Foundation (Tutkijat maailmalle -program) for financial support. The authors thank Eskil Sahlin and Tove Mali’n from RISE for the ICP-OES measurements and for lending the SMPS equipment. Karin Hallstensson from RISE is acknowledged for the optical microscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Harra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harra, J., Tuominen, M., Juuti, P. et al. Characteristics of nFOG, an aerosol-based wet thin film coating technique. J Coat Technol Res 15, 623–632 (2018). https://doi.org/10.1007/s11998-017-0022-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-017-0022-7

Keywords

Navigation