Skip to main content
Log in

Optimization of Pinhão Extract Encapsulation by Solid Dispersion and Application to Cookies as a Bioactive Ingredient

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Pinhão residues have a wide range of bioactive compounds and encapsulation can be one of the alternatives to increase their bioavailability. Thus, this work aimed to apply pinhão extract, pure and encapsulated by solid dispersion, in the formulation of cookies as a bioactive ingredient. For that, pinhão extract was encapsulated in different biopolymers (sodium caseinate, gelatin, and gum arabic) and with different shear mechanisms (sonication, Ultra-Turrax, and magnetic stirring). The best encapsulation procedure has been defined by a chemometric analysis (hierarchical cluster analysis), considering thermal properties (DSC) of particles and ( +)-catechin encapsulation efficiency (HPLC). The optimized conditions were gelatin as encapsulation agent and Ultra-Turrax as shear mechanism (70.1 ± 2.8 °C maximum endothermic peak temperature and 96.0 ± 2.3% ( +)-catechin encapsulation efficiency). The phenolic profile of the encapsulated extract showed the presence of ( +)-catechin (0.31 ± 0.01 (mg/gparticle), protocatechuic acid (0.29 ± 0.00 mg/gparticle), and ( −)-epicatechin (0.11 ± 0.00 mg/gparticle). Both the pure and encapsulated extracts were incorporated into the cookie formulation, which was characterized in terms of centesimal composition, color parameters, texture, and sensory aspects. It was found that cookies with the pure and the encapsulated extract showed significant differences concerning the centesimal composition, products added with pinhão extract and encapsulated extract presented higher values when compared to the control, probably influenced by the mineral content of the pinhão. In addition, higher hardness values were detected for cookies formulated with the encapsulated extract, which possibly negatively affected the consumer’s sensory perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information file.

References

  • Ahmad, M., Mudgil, P., Gani, A., Hamed, F., Masoodi, F. A., & Maqsood, S. (2019). Nano-encapsulation of catechin in starch nanoparticles: Characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chemistry, 270, 95–104. https://doi.org/10.1016/j.foodchem.2018.07.024

    Article  CAS  PubMed  Google Scholar 

  • Ahuja, K., & Rawat, A. (2020). Food encapsulation market size by type, by technology, by shell material, regional outlook, growth potential, price trend, competitive market share & forecast, 2020–2026.

  • Almeida, M. M. C., Francisco, C. R. L., de Oliveira, A., de Campos, S. S., Bilck, A. P., Fuchs, R. H. B., et al. (2018). Textural, color, hygroscopic, lipid oxidation, and sensory properties of cookies containing free and microencapsulated chia oil. Food and Bioprocess Technology. https://doi.org/10.1007/s11947-018-2057-x

    Article  Google Scholar 

  • Ashokkumar, M., Lee, J., Kentish, S., & Grieser, F. (2007). Bubbles in an acoustic field: An overview. Ultrasonics Sonochemistry, 14(4), 470–475. https://doi.org/10.1016/j.ultsonch.2006.09.016

    Article  CAS  PubMed  Google Scholar 

  • Bessada, S. M. F., Barreira, J. C. M., Barros, L., Ferreira, I. C. F. R., & Oliveira, M. B. P. P. (2016). Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Industrial Crops and Products, 89, 45–51. https://doi.org/10.1016/j.indcrop.2016.04.065

    Article  CAS  Google Scholar 

  • Biel, W., Witkowicz, R., Piątkowska, E., & Podsiadło, C. (2020). Proximate composition, minerals and antioxidant activity of artichoke leaf extracts. Biological Trace Element Research, 194(2), 589–595. https://doi.org/10.1007/s12011-019-01806-3

    Article  CAS  PubMed  Google Scholar 

  • Branco, C. S., Duong, A., Machado, A. K., Wu, A., Scola, G., Andreazza, A. C., & Salvador, M. (2019). Araucaria angustifolia (Bertol.) Kuntze has neuroprotective action through mitochondrial modulation in dopaminergic SH-SY5Y cells. Molecular Biology Reports, 46(6), 6013–6025. https://doi.org/10.1007/s11033-019-05037-6

  • Brandão, J. H. S. G., Rodrigues, N. F., Eguiluz, M., Guzman, F., & Margis, R. (2019). Araucaria angustifolia chloroplast genome sequence and its relation to other araucariaceae. Genetics and Molecular Biology, 42(3), 671–676. https://doi.org/10.1590/1678-4685-gmb-2018-0213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazil. RDC No 12, Ministério da Saúde - MS e Agência Nacional de Vigilância Sanitária – ANVISA (2001). Brazil.

  • Carvalho, N. R., Barata-Silva, A. W., Pereira, V. S., & Gomes, L. A. A. (2020). University extension in rural community: Dialogues for the conservation of Araucaria angustifolia. Revista Conexão UEPG, 16, 1–12.

    Google Scholar 

  • Chandrapala, J., Martin, G. J. O., Kentish, S. E., & Ashokkumar, M. (2014). Dissolution and reconstitution of casein micelle containing dairy powders by high shear using ultrasonic and physical methods. Ultrasonics Sonochemistry, 21(5), 1658–1665. https://doi.org/10.1016/j.ultsonch.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  • Christensen, Z. T., Ogden, L. V., Dunn, M. L., & Eggett, D. L. (2006). Multiple comparison procedures for analysis of ranked data. Journal of Food Science. https://doi.org/10.1111/j.1365-2621.2006.tb08916.x

    Article  Google Scholar 

  • de Barros, H. E. A., Natarelli, C. V. L., de Carvalho Tavares, I. M., de Oliveira, A. L. M., Araújo, A. B. S., Pereira, J., et al. (2020). Nutritional clustering of cookies developed with cocoa shell, soy, and green banana flours using exploratory methods. Food and Bioprocess Technology, 13(9), 1566–1578. https://doi.org/10.1007/s11947-020-02495-w

    Article  CAS  Google Scholar 

  • de Freitas, T. B., Santos, C. H. K., da Silva, M. V., Shirai, M. A., Dias, M. I., Barros, L., et al. (2018). Antioxidants extraction from Pinhão (Araucaria angustifolia (Bertol.) Kuntze) coats and application to zein films. Food Packaging and Shelf Life, 15, 28–34. https://doi.org/10.1016/j.fpsl.2017.10.006

    Article  Google Scholar 

  • de Oliveira, A., Moreira, T. F. M., Pepinelli, A. L. S., Costa, L. G. M. A., Leal, L. E., da Silva, T. B. V., et al. (2021). Bioactivity screening of pinhão (Araucaria angustifolia (Bertol.) Kuntze) seeds extracts: Inhibition of cholinesterases and α-amylases, cytotoxic and anti-inflammatory activities. Food & Function, Accepted Manuscript. https://doi.org/10.1039/D1FO01163D

  • de Souza, K. C., Correa, L. G., da Silva, T. B. V., Moreira, T. F. M., de Oliveira, A., Sakanaka, L. S., et al. (2020). Soy protein isolate films incorporated with pinhão (Araucaria angustifolia (Bertol.) Kuntze) extract for potential use as edible oil active packaging. Food and Bioprocess Technology, 13(6), 998–1008. https://doi.org/10.1007/s11947-020-02454-5

  • Dorneles, M. S., & Noreña, C. P. Z. (2020). Microwave‐assisted extraction of bioactive compounds from Araucaria angustifolia bracts followed by encapsulation. Journal of Food Processing and Preservation, 44(6). https://doi.org/10.1111/jfpp.14484

  • Fonseca, L. M., de Oliveira, J. P., Crizel, R. L., da Silva, F. T., da Rosa Zavareze, E., & Borges, C. D. (2020). Electrospun starch fibers loaded with pinhão (Araucaria angustifolia) coat extract rich in phenolic compounds. Food Biophysics. https://doi.org/10.1007/s11483-020-09629-9

    Article  Google Scholar 

  • Gharieh, A., Khoee, S., & Mahdavian, A. R. (2019). Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Advances in Colloid and Interface Science, 269, 152–186. https://doi.org/10.1016/J.CIS.2019.04.010

    Article  CAS  PubMed  Google Scholar 

  • Ghoshal, G., & Kaushik, P. (2020). Development of soymeal fortified cookies to combat malnutrition. Legume Science. https://doi.org/10.1002/leg3.43

    Article  Google Scholar 

  • Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: A critical perspective. Trends in Food Science and Technology. Elsevier Ltd. https://doi.org/10.1016/j.tifs.2017.12.006

  • ISO. (2006). Sensory analysis — Methodology — Ranking., Pub. L. No. ISO 8587:2006.

  • Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2015). Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, 8(8), 1635–1644. https://doi.org/10.1007/s11947-015-1521-0

    Article  CAS  Google Scholar 

  • Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2016). Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, 87, 101–113. https://doi.org/10.1016/j.ijbiomac.2016.01.117

    Article  CAS  PubMed  Google Scholar 

  • Karavas, E., Ktistis, G., Xenakis, A., & Georgarakis, E. (2006). Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. European Journal of Pharmaceutics and Biopharmaceutics, 63, 103–114. https://doi.org/10.1016/j.ejpb.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  • Koehnlein, E. A., Carvajal, A. E. S. S., Koehnlein, E. M., Coelho-Moreira, J. S., Inacio, F. D., Castoldi, R., et al. (2012). Antioxidant activities and phenolic compounds of raw and cooked Brazilian pinhão (Araucaria angustifolia) seeds. African Journal of Food Science, 6(21), 512–518. https://doi.org/10.5897/AJFS12.128

    Article  CAS  Google Scholar 

  • Leimann, F. V., Biz, M. H., Musyanovych, A., Sayer, C., Landfester, K., & de Ara??jo, P. H. H. (2013). Hydrolysis of poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles. Journal of Applied Polymer Science, 128(5), 3093–3098. https://doi.org/10.1002/app.38506

  • Leimann, V. F., Gonçalves, O. H., Sorita, G. D., Rezende, S., Bona, E., Fernandes, I. P. M., et al. (2019). Heat and pH stable curcumin-based hydrophylic colorants are obtained by the solid dispersion technology assisted by spray-drying. Chemical Engineering Science, 205(21), 248–258. https://doi.org/10.1016/j.ces.2019.04.044

    Article  CAS  Google Scholar 

  • Lutz, I. A. (2008). Métodos físicos-quimicos para análise de Alimentos (4 ed.). SP: IAL. https://doi.org/10.1017/CBO9781107415324.004

  • Matias, C. A., Vilela, P. B., Becegato, V. A., & Paulino, A. T. (2019). Adsorption and removal of methylene blue from aqueous solution using sterile bract of Araucaria angustifolia as novel natural adsorbent. International Journal of Environmental Research, 13(6), 991–1003. https://doi.org/10.1007/s41742-019-00231-7

    Article  CAS  Google Scholar 

  • Minolta, K. (2020). Identifying color differences using L*a*b* or L*C*H* coordinates. https://sensing.konicaminolta.us/us/blog/identifying-color-differences-using-l-a-b-or-l-c-h-coordinates/

  • Newman, A., Knipp, G., & Zografi, G. (2012). Assessing the performance of amorphous solid dispersions. Journal of Pharmaceutical Sciences. John Wiley and Sons Inc. https://doi.org/10.1002/jps.23031

  • Peralta, R. M., Koehnlein, E. A., Oliveira, R. F., Correa, V. G., Corrêa, R. C. G., Bertonha, L., et al. (2016). Biological activities and chemical constituents of Araucaria angustifolia: An effort to recover a species threatened by extinction. Trends in Food Science and Technology, 54, 85–93. https://doi.org/10.1016/j.tifs.2016.05.013

    Article  CAS  Google Scholar 

  • Phunpee, S., Suktham, K., Surassmo, S., Jarussophon, S., Rungnim, C., Soottitantawat, A., et al. (2018). Controllable encapsulation of α-mangostin with quaternized β-cyclodextrin grafted chitosan using high shear mixing. International Journal of Pharmaceutics, 538(1–2), 21–29. https://doi.org/10.1016/j.ijpharm.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  • Piga, A., Catzeddu, P., Farris, S., Roggio, T., Sanguinetti, A., & Scano, E. (2005). Texture evolution of “amaretti” cookies during storage. European Food Research and Technology, 221(3–4), 387–391. https://doi.org/10.1007/s00217-005-1185-5

    Article  CAS  Google Scholar 

  • Pillai, D. S., Prabhasankar, P., Jena, B. S., & Anandharamakrishnan, C. (2012). Microencapsulation of Garcinia cowa fruit extract and effect of its use on pasta process and quality. International Journal of Food Properties, 15(3), 590–604. https://doi.org/10.1080/10942912.2010.494756

    Article  CAS  Google Scholar 

  • Raddatz, G. C., & Menezes, C. R. de. (2021). Microencapsulation and co-encapsulation of bioactive compounds for application in food: Challenges and perspectives. Ciência Rural, 51(3). https://doi.org/10.1590/0103-8478cr20200616

  • Rodríguez-García, J., Salvador, A., & Hernando, I. (2014). Replacing fat and sugar with inulin in cakes: Bubble size distribution, physical and sensory properties. Food and Bioprocess Technology, 7(4). https://doi.org/10.1007/s11947-013-1066-z

  • Rocha Parra, A. F., Sahagún, M., Ribotta, P. D., Ferrero, C., & Gómez, M. (2019). Particle size and hydration properties of dried apple pomace: Effect on dough viscoelasticity and quality of sugar-snap cookies. Food and Bioprocess Technology, 12(7), 1083–1092. https://doi.org/10.1007/s11947-019-02273-3

    Article  CAS  Google Scholar 

  • Santos, C. H. K., Baqueta, M. R., Coqueiro, A., Dias, M. I., Barros, L., Barreiro, M. F., et al. (2018). Systematic study on the extraction of antioxidants from pinhão (Araucaria angustifolia (bertol.) Kuntze) coat. Food Chemistry, 261, 216–223. https://doi.org/10.1016/j.foodchem.2018.04.057

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. C. D., Santos, P. D. D. F., Palazzi, N. C., Leimann, F. V., Fuchs, R. H. B., Bracht, L., & Gonçalves, O. H. (2017). Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots. Food and Function, 8(5). https://doi.org/10.1039/c7fo00452d

  • Silva, S. M., Koehnlein, E. A., Bracht, A., Castoldi, R., de Morais, G. R., Baesso, M. L., et al. (2014). Inhibition of salivary and pancreatic α-amylases by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Food Research International, 56, 1–8. https://doi.org/10.1016/j.foodres.2013.12.004

    Article  CAS  Google Scholar 

  • Silva, T. B. V. da, Moreira, T. F. M., de Oliveira, A., Bilck, A. P., Gonçalves, O. H., Ferreira, I. C. F. R., et al. (2019). Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food and Function, 10(12), 7697–7706. https://doi.org/10.1039/c9fo01315f

  • Šoronja Simović, D., Maravić, N., Šereš, Z., Mišan, A., Pajin, B., Jevrić, L. R., et al. (2017). Antioxidant capacity of cookies with non-modified and modified sugar beet fibers: Chemometric and statistical analysis. European Food Research and Technology, 243(2), 239–246. https://doi.org/10.1007/s00217-016-2739-4

    Article  CAS  Google Scholar 

  • Souza, M., Branco, C. S., Sene, J., DallAgnol, R., Agostini, F., Moura, S., & Salvador, M. (2014). Antioxidant and antigenotoxic activities of the brazilian pine Araucaria angustifolia (Bert.) O. Kuntze. Antioxidants, 3(1), 24–37. https://doi.org/10.3390/antiox3010024

  • Trojaike, G. H., Biondo, E., Padilha, R. L., Brandelli, A., & Sant’Anna, V. (2019). Antimicrobial activity of Araucaria angustifolia seed (pinhão) coat extract and its synergism with thermal treatment to inactivate Listeria monocytogenes. Food and Bioprocess Technology, 12(1), 193–197. https://doi.org/10.1007/s11947-018-2192-4

    Article  CAS  Google Scholar 

  • Vasconcelos, T., Sarmento, B., & Costa, P. (2007, December). Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2007.09.005

  • Venturini, L. H., Moreira, T. F. M., da Silva, T. B. V., de Almeida, M. M. C., Francisco, C. R. L., de Oliveira, A., et al. (2018). Partial substitution of margarine by microencapsulated chia seeds oil in the formulation of cookies. Food and Bioprocess Technology, 12(1). https://doi.org/10.1007/s11947-018-2188-0

  • Wang, R., Zhou, W., & Isabelle, M. (2007). Comparison study of the effect of green tea extract (GTE) on the quality of bread by instrumental analysis and sensory evaluation. Food Research International, 40(4), 470–479. https://doi.org/10.1016/j.foodres.2006.07.007

    Article  CAS  Google Scholar 

  • Wrolstad, R. E., & Smith, D. E. (2017). Color analysis. In S. Nielsen (Ed.), Food analysis (pp. 545–555). London, UK: Springer Nature. https://doi.org/10.1007/978-3-319-45776-5

  • Xu, J., Wang, W., & Li, Y. (2019). Dough properties, bread quality, and associated interactions with added phenolic compounds: A review. Journal of Functional Foods, 52(December 2018), 629–639. https://doi.org/10.1016/j.jff.2018.11.052

  • Ye, J. H., & Augustin, M. A. (2019). Nano- and micro-particles for delivery of catechins: Physical and biological performance. Critical Reviews in Food Science and Nutrition. Taylor and Francis Inc. https://doi.org/10.1080/10408398.2017.1422110

  • Yu, W., Xu, D., Li, D., Guo, L., Su, X., Zhang, Y., et al. (2019). Effect of pigskin-originated gelatin on properties of wheat flour dough and bread. Food Hydrocolloids, 94(March), 183–190. https://doi.org/10.1016/j.foodhyd.2019.03.016

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, P., Han, B., Xiang, Y., & Li, L. (2019). Hue, chroma, and lightness preference in Chinese adults: Age and gender differences. Color Research and Application, 44(6), 967–980. https://doi.org/10.1002/col.22426

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the “Central Analítica Multiusuário da UTFPR Campo Mourão” (CAMulti-CM) for the analyses.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Fernanda V. Leimann (process 039/2019) thanks to Fundação Araucária (CP 15/2017- Programa de Bolsas de Produtividade em Pesquisa e Desenvolvimento Tecnológico) and to CNPq (process number 421541/2018–0, Chamada Universal MCTIC/CNPq n.º 28/2018). The authors are also grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020); national funding by F.C.T. and P.I., through the institutional scientific employment program-contract for M.I.D and L.B. contracts. Also, to FEDER-Interreg España-Portugal programme for financial support through the project TRANSCoLAB 0612_TRANS_CO_LAB_2_P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lillian Barros, Lívia Bracht or Fernanda Vitória Leimann.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, A., Moreira, T.F.M., Pepinelli, A.L.S. et al. Optimization of Pinhão Extract Encapsulation by Solid Dispersion and Application to Cookies as a Bioactive Ingredient. Food Bioprocess Technol 15, 1517–1528 (2022). https://doi.org/10.1007/s11947-022-02817-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-022-02817-0

Keywords

Navigation