Skip to main content
Log in

Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water

  • Original Research
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

In this study, we present a novel atmospheric air plasma discharge for the generation of plasma-activated water (PAW), with the aim of reducing pesticide residues on fresh fruit. For this purpose, a large discharge volume pin-to-plate cold plasma reactor was employed. The pesticide-spiked grapes and strawberries were processed with varying PAW concentrations to study their efficacies for pesticide degradation combined with an evaluation of any induced changes in key nutritional and quality attributes. The results suggest that the reduction of chlorpyrifos was 79% on grapes and 69% on strawberries while that of carbaryl was 86% on grapes and 73% on strawberries, respectively. The degradation of pesticides in PAW is due to the generation of metastable reactive species including nitrates, nitrites, and hydrogen peroxide. The high oxidation potential and acidic environment of this PAW are proposed as important actors for pesticide dissipation. In addition to the effective pesticide reductions obtained, there were no significant changes in the key physical attributes (color and firmness) of the treated samples and only slight changes in the ascorbic acid levels observed for both strawberries and grapes. This study points to the effective potential of PAW for chemical decontamination of fruit while maintaining important quality and nutritional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alencar, E. R. d., Faroni, L. R. D. A., Pinto, M. d. S., Costa, A. R. d., & Silva, T. A. d. (2013). Postharvest quality of ozonized “nanicão” cv. bananas. Revista Ciência Agronômica, 44(1), 107–114.

    Article  Google Scholar 

  • Allwood, P. B., Malik, Y. S., Hedberg, C. W., & Goyal, S. M. (2004). Effect of temperature and sanitizers on the survival of feline calicivirus, Escherichia coli, and F-specific coliphage MS2 on leafy salad vegetables. Journal of Food Protection, 67(7), 1451–1456.

    Article  PubMed  Google Scholar 

  • Alothman, M., Kaur, B., Fazilah, A., Bhat, R., & Karim, A. A. (2010). Ozone-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 11(4), 666–671.

    Article  CAS  Google Scholar 

  • Bai, Y., Chen, J., Yang, Y., Guo, L., & Zhang, C. (2010). Degradation of organophosphorus pesticide induced by oxygen plasma: effects of operating parameters and reaction mechanisms. Chemosphere, 81(3), 408–414.

    Article  PubMed  CAS  Google Scholar 

  • Boehm, D., Heslin, C., Cullen, P. J., & Bourke, P. (2016). Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma. Scientific Reports, 6(1), 21464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourke, P., Ziuzina, D., Han, L., Cullen, P., & Gilmore, B. (2017). Microbiological interactions with cold plasma. Journal of Applied Microbiology, 123(2), 308–324.

    Article  PubMed  CAS  Google Scholar 

  • Brahmia, O., & Richard, C. (2003). Phototransformation of carbaryl in aqueous solution: laser-flash photolysis and steady-state studies. Journal of Photochemistry and Photobiology A: Chemistry, 156(1-3), 9–14.

    Article  CAS  Google Scholar 

  • Brandenburg, R., Ehlbeck, J., Stieber, M., v. Woedtke, T., Zeymer, J., Schlüter, O., et al. (2007). Antimicrobial treatment of heat sensitive materials by means of atmospheric pressure Rf-driven plasma jet. Contributions to Plasma Physics, 47(1-2), 72–79.

    Article  CAS  Google Scholar 

  • Feng, X., Ma, X., Liu, H., Xie, J., He, C., & Fan, R. (2019). Argon plasma effects on maize: pesticides degradation and quality changes. Journal of the Science of Food and Agriculture, 99(12), 5491–5498.

    Article  PubMed  CAS  Google Scholar 

  • Fett, W. (2002). Factors affecting the efficacy of chlorine against Esherichia coli O157: H7 and Salmonella on alfalfa seed. Food Microbiology, 19(2-3), 135–149.

    Article  CAS  Google Scholar 

  • Gao, L., Sun, L., Wan, S., Yu, Z., & Li, M. (2013). Degradation kinetics and mechanism of emerging contaminants in water by dielectric barrier discharge non-thermal plasma: the case of 17β-Estradiol. Chemical Engineering Journal, 228, 790–798.

    Article  CAS  Google Scholar 

  • Grzegorzewski, F., Ehlbeck, J., Schlüter, O., Kroh, L. W., & Rohn, S. (2011). Treating lamb’s lettuce with a cold plasma–Influence of atmospheric pressure Ar plasma immanent species on the phenolic profile of Valerianella locusta. LWT- Food Science and Technology, 44(10), 2285–2289.

    Article  CAS  Google Scholar 

  • Han, X., Balakrishnan, V. K., vanLoon, G. W., & Buncel, E. (2006). Degradation of the pesticide fenitrothion as mediated by cationic surfactants and α-nucleophilic reagents. Langmuir, 22(21), 9009–9017.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, B., Zheng, J., Qiu, S., Wu, M., Zhang, Q., Yan, Z., & Xue, Q. (2014). Review on electrical discharge plasma technology for wastewater remediation. Chemical Engineering Journal, 236, 348–368.

    Article  CAS  Google Scholar 

  • Kamrin, M. A. (1997). Pesticide profiles: toxicity, environmental impact, and fate: CRC press.

  • Lacombe, A., Niemira, B. A., Gurtler, J. B., Fan, X., Sites, J., Boyd, G., & Chen, H. (2015). Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology, 46, 479–484.

    Article  PubMed  CAS  Google Scholar 

  • Lozowicka, B., Jankowska, M., Hrynko, I., & Kaczynski, P. (2016). Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188(1), 51.

    Article  PubMed  CAS  Google Scholar 

  • Lu, P., Boehm, D., Bourke, P., & Cullen, P. J. (2017). Achieving reactive species specificity within plasma-activated water through selective generation using air spark and glow discharges. Plasma Processes and Polymers, 14(8), 1600207.

    Article  CAS  Google Scholar 

  • Lukes, P., Locke, B. R., & Brisset, J.-L. (2012). Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. Plasma chemistry and catalysis in gases and liquids, 1, 243–308.

    Article  Google Scholar 

  • Misra, N., Pankaj, S. K., Walsh, T., O’Regan, F., Bourke, P., & Cullen, P. J. (2014a). In-package nonthermal plasma degradation of pesticides on fresh produce. Journal of Hazardous Materials, 271, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Misra, N., Patil, S., Moiseev, T., Bourke, P., Mosnier, J., Keener, K., et al. (2014b). In-package atmospheric pressure cold plasma treatment of strawberries. Journal of Food Engineering, 125, 131–138.

    Article  CAS  Google Scholar 

  • Misra, N., Pankaj, S., Frias, J., Keener, K., & Cullen, P. (2015). The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biology and Technology, 110, 197–202.

    Article  CAS  Google Scholar 

  • Mousavi, S. M., Imani, S., Dorranian, D., Larijani, K., & Shojaee, M. (2016). Effect of cold plasma on degradation of organophosphorus pesticides used on some agricultural products. Journal of Plant Protection Research, 57(1), 25–35.

    Article  CAS  Google Scholar 

  • Phan, K. T. K., Phan, H. T., Boonyawan, D., Intipunya, P., Brennan, C. S., Regenstein, J. M., & Phimolsiripol, Y. (2018). Non-thermal plasma for elimination of pesticide residues in mango. Innovative Food Science & Emerging Technologies, 48, 164–171.

    Article  CAS  Google Scholar 

  • Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., & Marchesseau, S. (2018). Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Frontiers in Nutrition, 5.

  • Ranjitha Gracy, T. K., Gupta, V., & Mahendran, R. (2019). Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. Journal of Food Process Engineering, 42(6), e13242.

    Article  Google Scholar 

  • Sarangapani, C., Misra, N., Milosavljevic, V., Bourke, P., O’Regan, F., & Cullen, P. (2016). Pesticide degradation in water using atmospheric air cold plasma. Journal of Water Process Engineering, 9, 225–232.

    Article  Google Scholar 

  • Sarangapani, C., Danaher, M., Tiwari, B., Lu, P., Bourke, P., & Cullen, P. (2017a). Efficacy and mechanistic insigh Endocrine Disruptor degradation using atmospheric air plasma.

  • Sarangapani, C., Devi, R. Y., Thirumdas, R., Trimukhe, A. M., Deshmukh, R. R., & Annapure, U. S. (2017b). Physico-chemical properties of low-pressure plasma treated black gram. LWT- Food Science and Technology, 79, 102–110.

    Article  CAS  Google Scholar 

  • Sarangapani, C., O'Toole, G., Cullen, P., & Bourke, P. (2017c). Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies, 44, 235–241.

    Article  CAS  Google Scholar 

  • Sarangapani, C., Lu, P., Behan, P., Bourke, P., & Cullen, P. (2018a). Humic acid and trihalomethane breakdown with potential by-product formations for atmospheric air plasma water treatment. Journal of Industrial and Engineering Chemistry, 59, 350–361.

    Article  CAS  Google Scholar 

  • Sarangapani, C., Patange, A., Bourke, P., Keener, K., & Cullen, P. (2018b). Recent advances in the application of cold plasma technology in foods. Annual Review of Food Science and Technology, 9(1), 609–629.

    Article  PubMed  CAS  Google Scholar 

  • Sarangapani, C., Ziuzina, D., Behan, P., Boehm, D., Gilmore, B. F., Cullen, P., et al. (2019). Degradation kinetics of cold plasma-treated antibiotics and their antimicrobial activity. Scientific Reports, 9(1), 3955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scally, L., Gulan, M., Weigang, L., Cullen, P., & Milosavljevic, V. (2018). Significance of a non-thermal plasma treatment on LDPE biodegradation with Pseudomonas Aeruginosa. Materials, 11(10), 1925.

    Article  PubMed Central  CAS  Google Scholar 

  • Selma, M. V., Beltrán, D., Allende, A., Chacón-Vera, E., & Gil, M. I. (2007). Elimination by ozone of Shigella sonnei in shredded lettuce and water. Food Microbiology, 24(5), 492–499.

    Article  PubMed  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in enzymology, 299, 152–178.

  • Tappi, S., Gozzi, G., Vannini, L., Berardinelli, A., Romani, S., Ragni, L., & Rocculi, P. (2016). Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies, 33, 225–233.

  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10(1), 1–11.

    Article  Google Scholar 

  • Thirumdas, R., Kothakota, A., Annapure, U., Siliveru, K., Blundell, R., Gatt, R., & Valdramidis, V. P. (2018). Plasma activated water (PAW): chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology, 77, 21–31.

    Article  CAS  Google Scholar 

  • Tiwari, B. K., Muthukumarappan, K., O’Donnell, C. P., & Cullen, P. (2008). Kinetics of freshly squeezed orange juice quality changes during ozone processing. Journal of Agricultural and Food Chemistry, 56(15), 6416–6422.

    Article  PubMed  CAS  Google Scholar 

  • Wang, R., Nian, W., Wu, H., Feng, H., Zhang, K., Zhang, J., et al. (2012). Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. The European Physical Journal D, 66(10), 276.

    Article  CAS  Google Scholar 

  • Xu, S. (2000). Environmental fate of carbaryl. Sacramento: California Environmental Protection Agency, Department of Pesticide Regulation.

    Google Scholar 

  • Yuk, H. G., Yoo, M. Y., Yoon, J. W., Moon, K. D., Marshall, D. L., & Oh, D. H. (2006). Effect of combined ozone and organic acid treatment for control of Escherichia coli O157: H7 and Listeria monocytogenes on lettuce. Journal of Food Science, 71(3), M83–M87.

    Article  CAS  Google Scholar 

  • Zheng, Y., Wu, S., Dang, J., Wang, S., Liu, Z., Fang, J., Han, P., & Zhang, J. (2019). Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. Journal of Hazardous Materials, 377, 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.

    Article  CAS  Google Scholar 

  • Zhu, W.-C., Wang, B.-R., Xi, H.-L., & Pu, Y.-K. (2010). Decontamination of VX surrogate malathion by atmospheric pressure radio-frequency plasma jet. Plasma Chemistry and Plasma Processing, 30(3), 381–389.

    Article  CAS  Google Scholar 

  • Ziuzina, D., Patil, S., Cullen, P. J., Keener, K., & Bourke, P. (2014). Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiology, 42, 109–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The authors received funding from Science Foundation Ireland

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Cullen.

Ethics declarations

Conflict of Interest

Author PJ Cullen is the CEO of PlasmaLeap Technologies, the supplier of the plasma technology employed in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangapani, C., Scally, L., Gulan, M. et al. Dissipation of Pesticide Residues on Grapes and Strawberries Using Plasma-Activated Water. Food Bioprocess Technol 13, 1728–1741 (2020). https://doi.org/10.1007/s11947-020-02515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-020-02515-9

Keywords

Navigation