Skip to main content

Advertisement

Log in

Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review

  • Review
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Nanotechnology is poised to have a huge impact on food packaging applications. Bimetallic and trimetallic nanoparticles (NPs) are formed by combining two and three different metals and metal oxides, respectively. Compared with monometallic NPs, bimetallic and trimetallic NPs have attracted immense attention because of their diverse shape, size, high surface-to-volume ratios, chemical/physical stability, activity, and greater degree of selectivity, with respect to both technological and scientific view. Metal and metal oxide NPs proved to be highly potent antimicrobial and antioxidant properties, together with nanobiosensors for tracing and monitoring the condition of food. These nanostructured materials embedded with both biodegradable and non-degradable polymer to increase mechanical strength and barrier properties to extend the shelf life of various foods. In addition, polymer nanocomposites are treated with essential oils (EOs) to improve their performance in food packaging. In this review, we summarized most recent innovations in food packaging, merits, and demerits of biodegradable and non-degradable polymer used for food packaging. It also provides the different synthetic methods, importance of bimetallic and trimetallic NPs in relation to food packaging to enhance the shelf life of food. Finally, mode of action, toxicity, regulation, and legislation for safety in human consumption and the environment are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexandre, M., Beyer, G., Henrist, C., Cloots, R., Rulmont, A., Jérôme, R., & Dubois, P. (2001). Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers. Macromolecular Rapid Communications, 22, 643–646.

    CAS  Google Scholar 

  • Allcock, S., Young, E. H., Holmes, M., Gurdasani, D., Dougan, G., Sandhu, M. S., Solomon, L., & Torok, M. E. (2017). Antimicrobial resistance in human populations: challenges and opportunities. Global Health, Epidemiology and Genomics, 2, e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amenta, V., Aschberger, K., Arena, M., Bouwmeester, H., Moniz, F. B., Brandhoff, P., Gottardo, S., Marvin, H. J. P., Mech, A., Pesudo, L. Q., Rauscher, H., Schoonjans, R., Vettori, M. V., Weigel, S., & Peters, R. J. (2015). Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology, 73(1), 463–476.

    PubMed  Google Scholar 

  • Amini, S. M., Gilaki, M., & Karchani, M. (2014). Safety of nanotechnology in food industries. Electronic Physician, 6(4), 962–968.

    PubMed  PubMed Central  Google Scholar 

  • Arts, J. H. E., Hadi, M., Irfan, M.-A., Keene, A. M., Kreiling, R., Lyon, D., Maier, M., Michel, K., Petry, T., Sauer, U. G., Warheit, D., Wiench, K., Wohlleben, W., & Landsiedel, R. (2015). A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regulatory Toxicology and Pharmacology, 70(2), S1–S27.

    Google Scholar 

  • Azevedo, V. M., Dias, M. V., Borges, S. V., Fernandes, R. V. B., Silva, E. K., Medeiros, E. A., & Soares, N. F. F. (2017). Optical and structural properties of biodegradable whey protein isolate nanocomposite films for active packaging. International Journal of Food Properties, 20, 1869–1878.

    CAS  Google Scholar 

  • Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y.-K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201–1214.

    CAS  PubMed  Google Scholar 

  • Barani, H., Montazer, M., Samadi, N., & Toliyat, T. (2012). In situ synthesis of nano silver/lecithin on wool: enhancing nanoparticles diffusion. Colloids and Surfaces B: Biointerfaces, 92, 9–15.

    CAS  PubMed  Google Scholar 

  • Basavegowda, N., & Lee, Y. R. (2013). Synthesis of silver nanoparticles using Satsuma mandarin (Citrus unshiu) peel extract: A novel approach towards waste utilization. Materials Letters, 109, 31–33.

    CAS  Google Scholar 

  • Basavegowda, N., Idhayadhulla, A., & Lee, Y. R. (2014). Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Industrial Crops and Products, 52, 745–751.

    CAS  Google Scholar 

  • Basavegowda, N., Mishra, K., Lee, Y. R., & Joh, Y.-G. (2016). Magnetically separable iron oxide nanoparticles: an efficient and reusable catalyst for imino Diels–Alder reaction. Bulletin of the Korean Chemical Society, 37, 142–147.

    CAS  Google Scholar 

  • Basavegowda, N., Mishra, K., & Lee, Y. R. (2017). Trimetallic FeAgPt alloy as a nanocatalyst for the reduction of 4-nitroaniline and decolorization of rhodamine B: A comparative study. Journal of Alloys and Compounds, 701, 456–464.

    CAS  Google Scholar 

  • Basavegowda, N., Mishra, K., & Lee, Y. R. (2019). Fe3O4-decorated MWCNTs as an efficient and sustainable heterogeneous nanocatalyst for the synthesis of polyfunctionalised pyridines in water. Catalysis Letters, 34, 558–569.

    CAS  Google Scholar 

  • Bathla, S., Jain, T., & Bains, K. (2015). Role of nanotechnology in food era. International Journal of Health Sciences and Research, 5(6), 581–591.

    Google Scholar 

  • Bhattacharya, S., Jang, J., Yang, L., Akin, D., & Bashir, R. (2007). Biomems and nanotechnology based approaches for rapid detection of biological entities. Journal of Rapid Methods and Automation in Microbiology, 15, 1–32.

    CAS  Google Scholar 

  • Böhme, K., Fernández-No, I. C., Barros-Velázquez, J., Gallardo, J. M., Cañas, B., & Calo-Mata, P. (2012). Species identification of food spoilage and pathogenic bacteria by MALDI-TOF mass fingerprinting. In K. Kapiris (Ed.), ISBN: 978-953-51-0560-2 Food Quality. London: InTech.

    Google Scholar 

  • Böhme, K., Calo-Mata, P., Barros-Velázquez, J., & Ortea, I. (2019). Review of recent DNA-based methods for main food-authentication topics. Journal of Agricultural and Food Chemistry, 6714, 3854–3864.

    Google Scholar 

  • Boucher, M. B., Zugic, B., Cladaras, G., Kammert, J., Marcinkowski, M. D., Lawton, T. J., Sykes, E. C. H., & Flytzani-Stephanopoulos, M. (2013). Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 15(29), 12187–12196.

    CAS  PubMed  Google Scholar 

  • Bratovčić, A., Odobašić, A., Ćatić, S., & Šestan, I. (2015). Application of polymer nanocomposite materials in food packaging. Croatian Journal of Food Science and Technology, 7(2), 86–94.

    Google Scholar 

  • Brody, A. L., Bugusu, B., Han, J. H., Sand, C. K., & Mchugh, T. (2008). Innovative food packaging solutions. Journal of Food Science, 73(8), 107–116.

    Google Scholar 

  • Brown, D. M., Stone, V., Findlay, P., MacNee, W., & Donaldson, K. (2000). Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occupational and Environmental Medicine, 57(10), 685–691.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burda, C., Chen, X., Narayanan, R., & El-Sayed, M. A. (2005). Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 105(4), 1025–1102.

    CAS  PubMed  Google Scholar 

  • Caon, T., Martelli, S. M., & Fakhouri, F. M. (2017). New trends in the food industry: application of nanosensors in food packaging. In Nanobiosensors, Chapter 18 (pp. 773–804). Cambridge: Academic.

    Google Scholar 

  • Carrero-Sánchez, J. C., Elías, A. L., Mancilla, R., Arrellín, G., Terrones, H., Laclette, J. P., & Terrones, M. (2006). Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Letters, 6(8), 1609–1616.

    PubMed  Google Scholar 

  • Cavaliere, E., De Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, G. M., & Gavioli, L. (2015). Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomedicine, 11(6), 1417–1423.

    CAS  PubMed  Google Scholar 

  • Clarinval, A. M., & Halleux, J. (2005). Classification of biodegradable polymers. In Smith (Ed.), Biodegradable polymers for industrial applications (pp. 3–31). Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Cockburn, A., Bradford, R., Buck, N., Constable, A., Edwards, G., Haber, B., Hepburn, P., Howlett, J., Kampers, F., Klein, C., Radomski, M., Stamm, H., Wijnhoven, S., & Wildemann, T. (2012). Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food and Chemical Toxicology, 50(6), 2224–2242.

    CAS  PubMed  Google Scholar 

  • Conte, A., Longano, D., Costa, C., Ditaranto, N., Ancona, A., Cioffi, N., Scrocco, C., Sabbatini, L., Contò, F., & Del Nobile, M. A. (2013). A novel preservation technique applied to fiordilatte cheese. Innovative Food Science and Emerging Technologies, 19, 158–165.

    CAS  Google Scholar 

  • Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., & Cummins, E. (2012). Nanotechnologies in the food industry- recent developments, risks and regulation. Trends in Food Science and Technology, 24(1), 30–46.

    CAS  Google Scholar 

  • Das, M., Saxena, N., & Dwivedi, P. D. (2008). Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicology, 3, 10–18.

    Google Scholar 

  • Dastjerdi, R., & Montazer, M. (2010). A review on the application of inorganic nano-structured materials in the modification of textiles: focus on antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 79(1), 5–18.

    CAS  PubMed  Google Scholar 

  • De Jong, A. R., Boumans, H., Slaghek, T., Veen, V., Rijk, R., & Van Zandvoort, M. (2005). Active and intelligent packaging for food: is it the future? Food Additives & Contaminants, 22(10), 975–979.

    Google Scholar 

  • Dimitrijevic, M., Karabasil, N., Boskovic, M., Teodorovic, V., Vasilev, D., Djordjevic, V., Kilibarda, N., & Cobanovic, N. (2015). Safety aspects of nanotechnology applications in food packaging. Procedia Food Science, 5, 57–60.

    Google Scholar 

  • Dosev, D., Guo, B., & Kennedy, I. M. (2006). Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis. Journal of Aerosol Science, 37, 402–412.

    CAS  Google Scholar 

  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1–24.

    CAS  PubMed  Google Scholar 

  • Eilers, H. (2006). Synthesis and characterization of nanophase yttria co-doped with erbium and ytterbium. Materials Letters, 60, 214–217.

    CAS  Google Scholar 

  • Ekezie, F. G. C., Cheng, J. H., & Sun, D. W. (2018). Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends in Food Science and Technology, 74, 12–25.

    Google Scholar 

  • Fang, Y., & Wang, E. (2013). Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale, 5(5), 1843–1848.

    CAS  PubMed  Google Scholar 

  • Ferrando, R., Jellinek, J., & Johnston, R. L. (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108(3), 845–910.

    CAS  PubMed  Google Scholar 

  • Franger, S., Berthet, P., & Berthon, J. (2014). Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Journal of Solid State Electrochemistry, 8, 218–223.

    Google Scholar 

  • Fuertes, G., Soto, I., Carrasco, R., Vargas, M., Sabattin, J., & Lagos, C. (2016). Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. Journal of Sensors, 4046061, 1–8.

    Google Scholar 

  • Gordon, T., Perlstein, B., Houbara, O., Felner, I., Banin, E., & Margel, S. (2011). Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374, 1–8.

    CAS  Google Scholar 

  • Gu, H., Yang, Z., Gao, J., Chang, C. K., & Xu, B. (2005). Heterodimers of nanoparticles: Formation at a liquid−liquid interface and particle-specific surface modification by functional molecules. Journal of the American Chemical Society, 127(1), 34–35.

    CAS  PubMed  Google Scholar 

  • Guillard, V., Gaucel, S., Fornaciari, C., Angellier-Coussy, H., Buche, P., & Gontard, N. (2018). The next generation of sustainable food packaging to preserve our environment in a circular economy context. Frontiers in Nutrition, 5, 121.

    PubMed  PubMed Central  Google Scholar 

  • Guisbiers, G., Khanal, S., Ruiz-Zepeda, F., de la Puente, J. R., & José-Yacaman, M. (2014). Cu–Ni nano-alloy: mixed, core–shell or Janus nano-particle? Nanoscale, 6(24), 14630–14635.

    CAS  PubMed  Google Scholar 

  • Gun’ko, Y. K., Pillai, S. C., & McInerney, D. (2001). Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors. Journal of Materials Science: Materials in Electronics, 12, 299–302.

    Google Scholar 

  • Hasanpoor, M., Aliofkhazraei, M., & Delavari, H. (2015). Microwave-assisted synthesis of zinc oxide nanoparticles. Procedia Materials Science, 11, 320–325.

    CAS  Google Scholar 

  • Henriette, M. C., & de Azeredo. (2009). Nanocomposites for food packaging applications. Food Research International, 42, 1240–1253.

    Google Scholar 

  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145.

    CAS  PubMed  Google Scholar 

  • Issa, A. T., Schimmel, K. A., Worku, M., Shahbazi, A., Ibrahim, S. A., & Tahergorabi, R. (2018). Sweet potato starch-based nanocomposites: development, characterization, and biodegradability. Starch, 70, 1700273.

    Google Scholar 

  • Joshi, S. S., Patil, S. F., Iyer, V., & Mahumuni, S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostructured Materials, 10(7), 1135–1144.

    CAS  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014a). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199.

    CAS  PubMed  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014b). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199.

    CAS  PubMed  Google Scholar 

  • Kerry, J. P., O’grady, M. N., & Hogan, S. A. (2006). Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Science, 74, 113–130.

    CAS  PubMed  Google Scholar 

  • Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S., & Yu, I. J. (2008). Twenty eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 20, 575–583.

    CAS  PubMed  Google Scholar 

  • Kolb, U., Quaiser, S. A., Winter, M., & Reetz, M. T. (1996). Investigation of tetraalkylammonium bromide stabilized palladium/platinum bimetallic clusters using extended X-ray absorption fine structure spectroscopy. Chemistry of Materials, 8, 1889–1894.

    CAS  Google Scholar 

  • Konishi, Y., Nomura, T., & Mizoe, K. (2004). A new synthesis route from spent sulfuric acid pickling solution to ferrite nanoparticles. Hydrometallurgy, 74, 57–65.

    CAS  Google Scholar 

  • Li, X., Kang, T., Cho, W. J., Lee, J. K., & Ha, C. S. (2001). Preparation and characterization of poly (butyleneterephthalate) organoclay nanocomposites. Macromolecular Rapid Communications, 22, 1306–1312.

    CAS  Google Scholar 

  • Lim, B., Wang, J., Camargo, P. H. C., Cho, E. C., Lee, E. P., & Xia, Y. (2008). Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Letters, 8(8), 2535–2540.

    CAS  PubMed  Google Scholar 

  • Liu, X., & Liu, X. (2012). Bimetallic nanoparticles: kinetic control matters. Angewandte Chemie, International Edition, 51(14), 3311–3313.

    CAS  Google Scholar 

  • Liu, Z. L., Wang, X., Yao, K. L., Du, G. H., Lu, Q. H., Ding, Z. H., Tao, J., Ning, Q., Luo, X. P., Tian, D. Y., & Xi, D. (2004). Synthesis of magnetite nanoparticles in W/O microemulsion. Journal of Materials Science, 39, 2633–2636.

    CAS  Google Scholar 

  • López-Quintela, M. A., Rivas, J., Blanco, M. C., & Tojo, C. (2004). Synthesis of nanoparticles in microemulsions. In L. M. Liz-Marzán & P. V. Kamat (Eds.), Nanoscale Materials. Boston: Springer.

    Google Scholar 

  • Malka, E., Perelshtein, I., Lipovsky, A., Shalom, Y., Naparstek, L., Perkas, N., Patick, T., Lubart, R., Nitzan, Y., Banin, E., & Gedanken, A. (2013). Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small, 9(23), 4069–4076.

    CAS  PubMed  Google Scholar 

  • Mao, Y., Park, T. J., & Wong, S. S. (2005). Synthesis of classes of ternary metal oxide nanostructures. Chemical Communications, 46, 5721–5735.

    Google Scholar 

  • Metak, A. M. (2015). Effects of nanocomposites based nano-silver and nano-titanium dioxide on food packaging materials. International Journal of Applied Science and Technology, 5(2), 26–40.

    Google Scholar 

  • Mihindukulasuriya, S. D. F., & Lim, L. T. (2014). Nanotechnology development in food packaging: a review. Trends in Food Science and Technology, 40, 149–167.

    CAS  Google Scholar 

  • Milan, B. Ž., Marija, B., Jelena, I., Marija, D., Jelena, J., Jasna, L., & Tatjana, B. (2013). Nanotechnology and its potential applications in meat industry. Tehnologija Mesa, 54(2), 168–175.

    CAS  Google Scholar 

  • Mishra, K., Basavegowda, N., & Lee, Y. R. (2015a). Biosynthesis of Fe, Pd, and Fe–Pd bimetallic nanoparticles and their application as recyclable catalysts for [3 + 2] cycloaddition reaction: a comparative approach. Catalysis Science & Technology, 5, 2612–2621.

    CAS  Google Scholar 

  • Mishra, K., Basavegowda, N., & Lee, Y. R. (2015b). AuFeAg hybrid nanoparticles as an efficient recyclable catalyst for the synthesis of α, β- and β, β- dichloroenones. Applied Catalysis A: General, 506, 180–187.

    CAS  Google Scholar 

  • Mizukoshi, Y., Fujimoto, T., Nagata, Y., Oshima, R., & Maeda, Y. (2000). Characterization and catalytic activity of core−shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. The Journal of Physical Chemistry. B, 104, 6028–6032.

    CAS  Google Scholar 

  • Nabavi, H. F., Aliofkhazraei, M. & Hasanpoor M. (2016). Combustion and coprecipitation synthesis of Co–Zn ferrite nanoparticles: Comparison of structure and magnetic properties. International Journal of Applied Ceramic Technology, 13(6), 1112–1118.

  • Nemmar, A., Hoet, P. H. M., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M. F., Vanbilloen, H., Mortelmans, L., & Nemery, B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105(4), 411–414.

    CAS  PubMed  Google Scholar 

  • Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6–7), 437–445.

    PubMed  Google Scholar 

  • Oniciuc, E.-A., Nicolau, A. I., Hernandez, M., & Rodrıguez-Lazaro, D. (2017). Presence of methicillin-resistant Staphylococcus aureus in the food chain. Trends in Food Science and Technology, 61, 49–59.

    CAS  Google Scholar 

  • Orsuwan, A., & Sothornvit, R. (2018). Polysaccharide nanobased packaging materials for food application. In Food Packaging and Preservation: Handbook of Food Bioengineering, vol 9. Grumezescu, A.M., Holban, A.M. Academic Cambridge; pp 239–270.

    Google Scholar 

  • Othman, S. H. (2014). Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, 296–303.

    Google Scholar 

  • Othman, S. H., Salam, N. R. A., Zainal, N., Zainal, N., Basha, R. K., & Talib, R. A. (2014). Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy, 945930, 1–6.

    Google Scholar 

  • Panea, B., Ripoll, G., González, J., Fernández-Cuello, Á., & Albertí, P. (2013). Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. Journal of Food Engineering, 123, 104–112.

    Google Scholar 

  • Pathakoti, K., Manubolu, M., & Hwang, H. M. (2017). Nanostructures: current uses and future applications in food science. Journal of Food and Drug Analysis, 25(2), 245–253.

    CAS  PubMed  Google Scholar 

  • Pinto, R. J. B., Daina, S., Sadocco, P., Neto, C. P., & Trindade, T. (2013). Antibacterial activity of nanocomposites of copper and cellulose. BioMed Research International, 280512, 1–6.

    Google Scholar 

  • Pokropivny, V. V., & Skorokhod, V. V. (2007). Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Materials Science and Engineering: C, 27, 990–993.

    CAS  Google Scholar 

  • Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International Journal of Biological Macromolecules, 122, 82–87.

    CAS  PubMed  Google Scholar 

  • Qu, J. H., Wei, Q., & Sun, D. W. (2018). Carbon dots: Principles and their applications in food quality and safety detection. Critical Reviews in Food Science and Nutrition, 58(14), 2466–2475.

    CAS  PubMed  Google Scholar 

  • Ramos, O. L., Pereira, R. N., Cerqueira, M. A., Martins, J. R., & Vicente, A. A. (2018). Bio-based nanocomposites for food packaging and their effect in food quality and safety. In A. M. Grumezescu & A. M. Holban (Eds.), Food Packaging and Preservation: Handbook of Food Bioengineering (Vol. 9, pp. 271–306). Cambridge: Academic.

    Google Scholar 

  • Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S. (2018). Methods for synthesis of nanoparticles and fabrication of nanocomposites. In Synthesis of inorganic nanomaterials (pp. 121–139). Sawston: Woodhead Publishings.

    Google Scholar 

  • Reijnders, L. (2009). The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polymer Degradation and Stability, 94, 873–876.

    CAS  Google Scholar 

  • Rezaei, A., Fathi, M., & Jafari, S. M. (2019). Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 88, 146–162.

    CAS  Google Scholar 

  • Rhim, J. W., Park, H. M., & Ha, C. S. (2003). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629–1652.

    Google Scholar 

  • Robertson, G. L. (2005). Food packaging: principles and practice. New York: CRC Press.

    Google Scholar 

  • Rodriguez, J. A., & Goodman, D. W. (1992). The nature of the metal-metal bond in bimetallic surfaces. Science, 257(5072), 897–903.

    CAS  PubMed  Google Scholar 

  • Salarbashi, D., Tafaghodi, M., Bazzaz, B. S. F., Birjand, S. M. A., & Bazeli, J. (2018). Characterization of a green nanocomposite prepared from soluble soy bean polysaccharide/Cloisite 30B and evaluation of its toxicity. International Journal of Biological Macromolecules, 120(Pt A), 109–118.

    CAS  PubMed  Google Scholar 

  • Sanuja, S., Agalya, A., & Umapathy, M. J. (2014). Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. International Journal of Polymeric Materials and Polymeric Biomaterials, 63, 733–740.

    CAS  Google Scholar 

  • Sardella, D., Gatt, R., & Valdramidis, V. P. (2018). Turbidimetric assessment of the growth of filamentous fungi and the antifungal activity of zinc oxide nanoparticles. Journal of Food Protection, 81(6), 934–941.

    CAS  PubMed  Google Scholar 

  • Sharma, C., Dhiman, R., Rokana, N., & Panwar, H. (2017). Nanotechnology: an untapped resource for food packaging. Frontiers in Microbiology, 8, 1735.

    PubMed  PubMed Central  Google Scholar 

  • Silva, G. D., Abeysundara, A. T., & Aponso, M. M. W. (2017). A review on nanocomposite materials for food packaging which comprising antimicrobial activity. International Journal of Chemical Studies, 5(4), 228–230.

    Google Scholar 

  • Silvestre, C., Duraccio, D., & Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science, 36(12), 1766–1782.

    CAS  Google Scholar 

  • Singh, P., Kim, Y.-J., Zhang, D., & Yang, D.-C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.

    CAS  PubMed  Google Scholar 

  • Siripatrawan, U., & Kaewklin, P. (2018). Fabrication and characterization of chitosan-titanium dioxide nanocomposite film as ethylene scavenging and antimicrobial active food packaging. Food Hydrocolloids, 84, 125–134.

    CAS  Google Scholar 

  • Sohail, M., Sun, D. W., & Zhu, Z. (2018). Recent developments in intelligent packaging for enhancing food quality and safety. Critical Reviews in Food Science and Nutrition, 58(15), 2650–2662.

    PubMed  Google Scholar 

  • Sozer, N., & Kokini, J. L. (2009). Nanotechnology and its applications in the food sector. Trends in Biotechnology, 27(2), 82–89.

    CAS  PubMed  Google Scholar 

  • Stankic, S., Suman, S., Haque, F., & Vidic, J. (2016). Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. Journal of Nanobiotechnology, 14, 73.

    PubMed  PubMed Central  Google Scholar 

  • Suyatma, N. E., Copinet, A., Tighzert, L., Tighzert, L., & Coma, V. (2004). Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 12, 1–6.

    CAS  Google Scholar 

  • Tao, F., Grass, M. E., Zhang, Y., Butcher, D. R., Renzas, J. R., Liu, Z., Chung, J. Y., Mun, B. S., Salmeron, M., & Somorjai, G. A. (2008). Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science, 322(5903), 932–934.

    CAS  PubMed  Google Scholar 

  • Tharanathan, R. N. (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science and Technology, 14, 71–78.

    CAS  Google Scholar 

  • Tiwari, J. N., Tiwari, R. N., & Kim, K. S. (2012). Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57, 724–803.

    CAS  Google Scholar 

  • Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2011). Chitosan-silver oxide nanocomposite film: preparation and antimicrobial activity. Bulletin of Materials Science, 34(1), 29–35.

    CAS  Google Scholar 

  • Vidic, J., Stankic, S., Haque, F., Ciric, D., Le Goffic, R., Vidy, A., Jupille, J., & Delmas, B. (2013). Selective antibacterial effects of mixed ZnMgO nanoparticles. Journal of Nanoparticle Research, 15, 1595–1604.

    PubMed  PubMed Central  Google Scholar 

  • von Bultzingslowen, C., McEvoy, A. K., McDonagh, C., MacCraith, B. D., Klimant, I., Krause, C., & Wolfbeis, O. S. (2002). Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst, 127, 1478–1483.

    Google Scholar 

  • Wu, G. S., Lin, Y., Yuan, X. Y., Xie, T., Cheng, B. C., & Zhang, L. D. (2004). A novel synthesis route to Y2O3:Eu nanotubes. Nanotechnology, 15, 568–571.

    CAS  Google Scholar 

  • Wu, M., Xing, Y., Jia, Y., Niu, H., Qi, H., Ye, J., & Chen, Q. (2005). Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite. Chemical Physics Letters, 401, 374–379.

    CAS  Google Scholar 

  • Wu, B., Huang, R., Sahu, M., Feng, X., Biswas, P., & Tang, Y. J. (2010). Bacterial responses to Cu-doped TiO(2) nanoparticles. Science of the Total Environment, 408(7), 1755–1758.

    CAS  PubMed  Google Scholar 

  • Xiao-e, L., Green, A. N. M., Haque, S. A., Mills, A., & Durrant, J. R. (2004). Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology B: Biology, 162, 253–259.

    Google Scholar 

  • Xie, X., Pu, H., & Sun, D. W. (2018). Recent advances in nanofabrication techniques for SERS substrates and their applications in food safety analysis. Critical Reviews in Food Science and Nutrition, 58(16), 2800–2813.

    CAS  PubMed  Google Scholar 

  • Yao, T., Cui, T., Wang, H., Xu, L., Cui, F., & Wu, J. (2014). A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye. Nanoscale, 6(13), 7666–7674.

    CAS  PubMed  Google Scholar 

  • Youssef, A. M., Abdel-Aziz, M. S., & El-Sayed, S. M. (2014). Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. International Journal of Biological Macromolecules, 69, 185–191.

    CAS  PubMed  Google Scholar 

  • Yu, W. T., Porosoff, M. D., & Chen, J. G. (2012). Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts. Chemical Reviews, 112(11), 5780–5817.

    CAS  PubMed  Google Scholar 

  • Zawadzka, K., Kisielewska, A., Piwoński, I., Kadziola, K., Felczak, A., Rozalska, S., Wronska, N., & Lisowska, K. (2016). Mechanisms of antibacterial activity and stability of silver nanoparticles grown on magnetron sputtered TiO2 coatings. Bulletin of Materials Science, 39, 57–68.

    CAS  Google Scholar 

  • Zhang, L.-F., Zhong, S.-L., & Xu, A.-W. (2013). Highly branched concave Au/Pd bimetallic nanocrystals with superior electrocatalytic activity and highly efficient SERS enhancement. Angewandte Chemie, International Edition, 52(2), 645–649.

    Google Scholar 

  • Zhu, Z., Cai, H., & Sun, D. W. (2018). Titanium dioxide (TiO2) photocatalysis technology for nonthermal inactivation of microorganisms in foods. Trends in Food Science and Technology, 75, 23–35.

    CAS  Google Scholar 

  • Zhu, Z., Cai, H., Sun, D. W., & Wang, H. W. (2019). Photocatalytic effects on the quality of pork packed in the package combined with TiO2 coated nonwoven fabrics. Journal of Food Process Engineering, 42(3), 12993.

    Google Scholar 

  • Zhuang, H., Brody, A. L., & Han, J. H. (2011). Modified atmosphere packaging for fresh-cut fruits and vegetables (pp. 1–7). Hoboken: Wiley.

    Google Scholar 

Download references

Funding

This work was financially supported by a research fund from Yeungnam University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

Writing–original draft preparation, N.B.; T.K.M.; Writing–review & editing, K.H.B.

Corresponding author

Correspondence to Kwang-Hyun Baek.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basavegowda, N., Mandal, T.K. & Baek, KH. Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. Food Bioprocess Technol 13, 30–44 (2020). https://doi.org/10.1007/s11947-019-02370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-019-02370-3

Keywords

Navigation