Skip to main content

Advertisement

Log in

Monitoring the Course of MS With Optical Coherence Tomography

  • Multiple Sclerosis and Related Disorders (P Villoslada, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Retinae of patients with multiple sclerosis (MS), as part of the central nervous system (CNS), display inflammatory and neurodegenerative changes. There is increasing evidence suggesting that retinal changes, and in particular neurodegeneration, mirror global CNS alterations in MS. Spectral domain optical coherence tomography (SD-OCT) is an inexpensive, rapid, non-invasive, and reproducible imaging technique that generates high-resolution images of tissues such as the retina. An advantage of SD-OCT over magnetic resonance imaging techniques in the assessment of neurodegeneration may be its sensitivity to capture changes at the individual patient level. Several studies demonstrate that changes within the inner retina (primarily as a reflection of optic neuropathy), as assessed by OCT, correlate with reduced quality of life, visual dysfunction, and global disability in MS. Moreover, longitudinal studies suggest that inner retinal thinning is an early phenomenon in MS and that retinal thinning may occur independent of previous symptomatic episodes of optic neuritis, significantly correlating with inflammatory disease. Preliminary studies suggest that MS disease-modifying therapies may have differential effects on OCT-determined rates of retinal atrophy, supporting a potential utility for OCT to investigate the neuroprotective benefits of disease-modifying therapies in MS, as well as an outcome in trials of putatively neuroprotective strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.

    Article  CAS  PubMed  Google Scholar 

  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hrynchak P, Simpson T. Optical coherence tomography: an introduction to the technique and its use. Optom Vis Sci. 2000;77:347–56.

    Article  CAS  PubMed  Google Scholar 

  4. Frohman EM, Fujimoto JG, Frohman TC, Calabresi PA, Cutter G, Balcer LJ. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol. 2008;4:664–75.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Warner CV, Syc SB, Stankiewicz AM, Hiremath G, Farrell SK, Crainiceanu CM, et al. The impact of utilizing different optical coherence tomography devices for clinical purposes and in multiple sclerosis trials. PLoS One. 2011;6:e22947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Saidha S, Syc SB, Durbin MK, Eckstein C, Oakley JD, Meyer SA, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler. 2011;17:1449–63. This was one of the first studies to demonstrate that GCIP thickness may have superior structure–function relationships with disability and visual function in MS as compared to RNFL thickness.

    Article  PubMed  Google Scholar 

  7. Saidha S, Syc SB, Ibrahim MA, Eckstein C, Warner CV, Farrell SK, et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain. 2011;134:518–33.

    Article  PubMed  Google Scholar 

  8. • Syc SB, Saidha S, Newsome SD, Ratchford JN, Levy M, Ford E, et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis. Brain. 2012;135:521–33. This paper showed how the ganglion cell layer reflects neurodegeneration in acute optic neuritis without confounding swelling and introduced this as a novel parameter to track optic neuritis severity.

    Article  PubMed  Google Scholar 

  9. Seigo MA, Sotirchos ES, Newsome S, Babiarz A, Eckstein C, Ford E, et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol. 2012;259:2119–30.

    Article  PubMed  Google Scholar 

  10. Lang A, Carass A, Hauser M, Sotirchos ES, Calabresi PA, Ying HS, et al. Retinal layer segmentation of macular OCT images using boundary classification. Biomed Opt Express. 2013;4:1133–52.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lang A, Carass A, Sotirchos E, Calabresi P, Prince JL. Segmentation of retinal OCT images using a random forest classifier. Proc SPIE Int Soc Opt Eng 2013;8669.

  12. • Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133:1591–601. This oculo-histopathology study of MS eyes shows that 79% of MS eyes have a dropout of ganglion cell neurons. Moreover, 40% of MS eyes have a dropout of neurons within the inner nuclear layer. In addition, activated microglia can be seen in the retinas of MS patients.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ratchford JN, Saidha S, Sotirchos ES, Oh JA, Seigo MA, Eckstein C, et al. Active MS is associated with accelerated retinal ganglion cell/inner plexiform layer thinning. Neurology. 2013;80:47–54.

    Article  PubMed  PubMed Central  Google Scholar 

  14. • Saidha S, Sotirchos ES, Ibrahim MA, Crainiceanu CM, Gelfand JM, Sepah YJ, et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol. 2012;11:963–72. This study provides evidence that changes in the inner nuclear layer thickness/volume are related with inflammatory activity in patients with multiple sclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Knier B, Schmidt P, Aly L, Buck D, Berthele A, Muhlau M, Zimmer C, Hemmer B, Korn T. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain. 2016 Aug 30. pii: aww219. [Epub ahead of print]

  16. • Gabilondo I, Martinez-Lapiscina EH, Fraga-Pumar E, Ortiz-Perez S, Torres-Torres R, Andorra M, et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol. 2015;77:517–28. This paper provides an extensive investigation in retinal changes after optic neuritis.

    Article  PubMed  Google Scholar 

  17. Al-Louzi OA, Bhargava P, Newsome SD, Balcer LJ, Frohman EM, Crainiceanu C, et al. Outer retinal changes following acute optic neuritis. Mult Scler. 2016;22:362–72.

    Article  CAS  PubMed  Google Scholar 

  18. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, et al. Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci. 1999;40:2520–7.

    CAS  PubMed  Google Scholar 

  19. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barkhof F, Calabresi PA, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009;5:256–66.

    Article  PubMed  Google Scholar 

  21. Sepulcre J, Murie-Fernandez M, Salinas-Alaman A, Garcia-Layana A, Bejarano B, Villoslada P. Diagnostic accuracy of retinal abnormalities in predicting disease activity in MS. Neurology. 2007;68:1488–94.

    Article  PubMed  Google Scholar 

  22. Gordon-Lipkin E, Chodkowski B, Reich DS, Smith SA, Pulicken M, Balcer LJ, et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology. 2007;69:1603–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dorr J, Wernecke KD, Bock M, Gaede G, Wuerfel JT, Pfueller CF, et al. Association of retinal and macular damage with brain atrophy in multiple sclerosis. PLoS One. 2011;6:e18132.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Saidha S, Al-Louzi O, Ratchford JN, Bhargava P, Oh J, Newsome SD, et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: a four-year study. Ann Neurol. 2015;78:801–13. This study provides the strongest evidence to support the association between retinal and brain atrophy in patients with multiple sclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  25. • Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol. 2006;59:963–9. This study provides the first evidence of a nonlinear association between retinal thickness and clinical outcome: a threshold of RNFL thickness (75 μm), below which RNFL measurements predicted persistent visual dysfunction after acute optic neuritis.

    Article  PubMed  Google Scholar 

  26. Naismith RT, Xu J, Tutlam NT, Snyder A, Benzinger T, Shimony J, et al. Disability in optic neuritis correlates with diffusion tensor-derived directional diffusivities. Neurology. 2009;72:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kolbe SC, Marriott M, Walt A, Fielding J, Klistorner A, Mitchell PJ, et al. Diffusion tensor imaging correlates of visual impairment in multiple sclerosis and chronic optic neuritis. Invest Ophthalmol Vis Sci. 2012;53:825–32.

    Article  PubMed  Google Scholar 

  28. Wang Y, van der Walt A, Paine M, Klistorner A, Butzkueven H, Egan GF, et al. Optic nerve magnetisation transfer ratio after acute optic neuritis predicts axonal and visual outcomes. PLoS One. 2012;7:e52291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S, et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol. 2014;75:98–107. This study provided evidence to support the potential role of trans-synaptic mechanisms of neurodegeneration in patients with multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  30. • Pfueller CF, Brandt AU, Schubert F, Bock M, Walaszek B, Waiczies H, et al. Metabolic changes in the visual cortex are linked to retinal nerve fiber layer thinning in multiple sclerosis. PLoS One. 2011;6:e18019. This study provided evidence to support the potential role of trans-synaptic mechanisms of neurodegeneration in patients with multiple sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reich DS, Smith SA, Gordon-Lipkin EM, Ozturk A, Caffo BS, Balcer LJ, et al. Damage to the optic radiation in multiple sclerosis is associated with retinal injury and visual disability. Arch Neurol. 2009;66:998–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Klistorner A, Sriram P, Vootakuru N, Wang C, Barnett MH, Garrick R, et al. Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions. Neurology. 2014;82:2165–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sinnecker T, Oberwahrenbrock T, Metz I, Zimmermann H, Pfueller CF, Harms L, et al. Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning—an ultrahigh-field MR pilot study. Eur Radiol. 2015;25:122–31.

    Article  PubMed  Google Scholar 

  34. Scheel M, Finke C, Oberwahrenbrock T, Freing A, Pech LM, Schlichting J, et al. Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: a combined optical coherence tomography and diffusion tensor imaging study. Mult Scler. 2014;20:1904–7.

    Article  PubMed  Google Scholar 

  35. Saidha S, Sotirchos ES, Oh J, Syc SB, Seigo MA, Shiee N, et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol. 2013;70:34–43.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Young KL, Brandt AU, Petzold A, Reitz LY, Lintze F, Paul F, et al. Loss of retinal nerve fibre layer axons indicates white but not grey matter damage in early multiple sclerosis. Eur J Neurol. 2013;20:803–11.

    Article  CAS  PubMed  Google Scholar 

  37. Oh J, Sotirchos ES, Saidha S, Whetstone A, Chen M, Newsome SD, et al. Relationships between quantitative spinal cord MRI and retinal layers in multiple sclerosis. Neurology. 2015;84:720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Zimmermann H, Freing A, Kaufhold F, Gaede G, Bohn E, Bock M, et al. Optic neuritis interferes with optical coherence tomography and magnetic resonance imaging correlations. Mult Scler. 2013;19:443–50. This study demonstrates that the global relationships reflected by retinal measures in MS are skewed/masked by prior optic neuritis possibly due to disproportionate localized retinal tissue injury following optic neuritis.

    Article  PubMed  Google Scholar 

  39. Knier B, Berthele A, Buck D, Schmidt P, Zimmer C, Muhlau M, et al. Optical coherence tomography indicates disease activity prior to clinical onset of central nervous system demyelination. Mult Scler. 2016;22:893–900.

    Article  PubMed  Google Scholar 

  40. Costello F, Hodge W, Pan YI, Freedman M, DeMeulemeester C. Differences in retinal nerve fiber layer atrophy between multiple sclerosis subtypes. J Neurol Sci. 2009;281:74–9.

    Article  PubMed  Google Scholar 

  41. Costello F, Hodge W, Pan YI, Eggenberger E, Freedman MS. Using retinal architecture to help characterize multiple sclerosis patients. Can J Ophthalmol. 2010;45:520–6.

    Article  PubMed  Google Scholar 

  42. Gelfand JM, Goodin DS, Boscardin WJ, Nolan R, Cuneo A, Green AJ. Retinal axonal loss begins early in the course of multiple sclerosis and is similar between progressive phenotypes. PLoS One. 2012;7:e36847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. • Oberwahrenbrock T, Schippling S, Ringelstein M, Kaufhold F, Zimmermann H, Keser N, et al. Retinal damage in multiple sclerosis disease subtypes measured by high-resolution optical coherence tomography. Mult Scler Int. 2012;2012:530305. This large cross-sectional study summarizes time domain OCT findings in different multiple sclerosis subtypes.

    PubMed  PubMed Central  Google Scholar 

  44. Oberwahrenbrock T, Ringelstein M, Jentschke S, Deuschle K, Klumbies K, Bellmann-Strobl J, et al. Retinal ganglion cell and inner plexiform layer thinning in clinically isolated syndrome. Mult Scler. 2013;19:1887–95.

    Article  PubMed  Google Scholar 

  45. Lange AP, Zhu F, Sayao AL, Sadjadi R, Alkabie S, Traboulsee AL, et al. Retinal nerve fiber layer thickness in benign multiple sclerosis. Mult Scler. 2013;19:1275–81.

    Article  PubMed  Google Scholar 

  46. Pulicken M, Gordon-Lipkin E, Balcer LJ, Frohman E, Cutter G, Calabresi PA. Optical coherence tomography and disease subtype in multiple sclerosis. Neurology. 2007;69:2085–92.

    Article  CAS  PubMed  Google Scholar 

  47. Burggraaff MC, Trieu J, de Vries-Knoppert WA, Balk L, Petzold A. The clinical spectrum of microcystic macular edema. Invest Ophthalmol Vis Sci. 2014;55:952–61.

    Article  PubMed  Google Scholar 

  48. • Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012;135:1786–93. This was the first study to demonstrate macular microcystoid changes in MS and identify an association between the presence of such retinal findings and increased disability in MS.

    Article  PubMed  PubMed Central  Google Scholar 

  49. McDonald WI, Barnes D. The ocular manifestations of multiple sclerosis. 1. Abnormalities of the afferent visual system. J Neurol Neurosurg Psychiatry. 1992;55:747–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Balcer LJ, Baier ML, Cohen JA, Kooijmans MF, Sandrock AW, Nano-Schiavi ML, et al. Contrast letter acuity as a visual component for the Multiple Sclerosis Functional Composite. Neurology. 2003;61:1367–73.

    Article  CAS  PubMed  Google Scholar 

  51. Newman N. Multiple sclerosis and related demyelinating diseases. In: Miller NR, Newman NJ, editors. Walsh and Hoyt’s clinical neuro-ophthalmology. 5th ed. Baltimore: Williams & Wilkins; 1998;5539-5676

  52. Rudick RA, Miller D, Clough JD, Gragg LA, Farmer RG. Quality of life in multiple sclerosis. Comparison with inflammatory bowel disease and rheumatoid arthritis. Arch Neurol. 1992;49:1237–42.

    Article  CAS  PubMed  Google Scholar 

  53. Ma SL, Shea JA, Galetta SL, Jacobs DA, Markowitz CE, Maguire MG, et al. Self-reported visual dysfunction in multiple sclerosis: new data from the VFQ-25 and development of an MS-specific vision questionnaire. Am J Ophthalmol. 2002;133:686–92.

    Article  PubMed  Google Scholar 

  54. Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. 2012;119:1250–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lampert EJ, Andorra M, Torres-Torres R, Ortiz-Perez S, Llufriu S, Sepulveda M, et al. Color vision impairment in multiple sclerosis points to retinal ganglion cell damage. J Neurol. 2015;262:2491–7.

    Article  CAS  PubMed  Google Scholar 

  56. • Baier ML, Cutter GR, Rudick RA, Miller D, Cohen JA, Weinstock-Guttman B, et al. Low-contrast letter acuity testing captures visual dysfunction in patients with multiple sclerosis. Neurology. 2005;64:992–5. This article described the important role of low-contrast letter acuity test to capture visual dysfunction in patients with multiple sclerosis.

    Article  CAS  PubMed  Google Scholar 

  57. Sabadia SB, Nolan RC, Galetta KM, Narayana KM, Wilson JA, Calabresi PA, et al. 20/40 or better visual acuity after optic neuritis: not as good as we once thought? J Neuroophthalmol. 2016;36:369–76.

    Article  PubMed  Google Scholar 

  58. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, et al. Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology. 2006;113:324–32.

    Article  PubMed  Google Scholar 

  59. • Talman LS, Bisker ER, Sackel DJ, Long Jr DA, Galetta KM, Ratchford JN, et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol. 2010;67:749–60. In this study, the authors found that MS patients with increasing reduction in retinal nerve fiber layer thickness had increasing loss of visual function over time.

    PubMed  PubMed Central  Google Scholar 

  60. • Martinez-Lapiscina EH, Ortiz-Perez S, Fraga-Pumar E, Martinez-Heras E, Gabilondo I, Llufriu S, et al. Colour vision impairment is associated with disease severity in multiple sclerosis. Mult Scler. 2014;20:1207–16. This study demonstrates that MS patients developing impairment of color vision over time have more severe MS.

    Article  PubMed  Google Scholar 

  61. Ortiz-Perez S, Andorra M, Sanchez-Dalmau B, Torres-Torres R, Calbet D, Lampert EJ, et al. Visual field impairment captures disease burden in multiple sclerosis. J Neurol. 2016;263:695–702.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng H, Laron M, Schiffman JS, Tang RA, Frishman LJ. The relationship between visual field and retinal nerve fiber layer measurements in patients with multiple sclerosis. Invest Ophthalmol Vis Sci. 2007;48:5798–805.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cole SR, Beck RW, Moke PS, Gal RL, Long DT. The National Eye Institute Visual Function Questionnaire: experience of the ONTT. Optic Neuritis Treatment Trial. Investig Ophthalmol Vis Sci. 2000;41:1017–21.

    CAS  Google Scholar 

  64. Noble J, Forooghian F, Sproule M, Westall C, O’Connor P. Utility of the National Eye Institute VFQ-25 questionnaire in a heterogeneous group of multiple sclerosis patients. Am J Ophthalmol. 2006;142:464–8.

    Article  PubMed  Google Scholar 

  65. Raphael BA, Galetta KM, Jacobs DA, Markowitz CE, Liu GT, Nano-Schiavi ML, et al. Validation and test characteristics of a 10-item neuro-ophthalmic supplement to the NEI-VFQ-25. Am J Ophthalmol. 2006;142:1026–35.

    Article  PubMed  Google Scholar 

  66. Mowry EM, Loguidice MJ, Daniels AB, Jacobs DA, Markowitz CE, Galetta SL, et al. Vision related quality of life in multiple sclerosis: correlation with new measures of low and high contrast letter acuity. J Neurol Neurosurg Psychiatry. 2009;80:767–72.

    Article  CAS  PubMed  Google Scholar 

  67. Toledo J, Sepulcre J, Salinas-Alaman A, Garcia-Layana A, Murie-Fernandez M, Bejarano B, et al. Retinal nerve fiber layer atrophy is associated with physical and cognitive disability in multiple sclerosis. Mult Scler. 2008;14:906–12.

    Article  CAS  PubMed  Google Scholar 

  68. Siepman TA, Bettink-Remeijer MW, Hintzen RQ. Retinal nerve fiber layer thickness in subgroups of multiple sclerosis, measured by optical coherence tomography and scanning laser polarimetry. J Neurol. 2010;257:1654–60.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Abalo-Lojo JM, Limeres CC, Gomez MA, Baleato-Gonzalez S, Cadarso-Suarez C, Capeans-Tome C, et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol. 2014;34:23–8.

    Article  PubMed  Google Scholar 

  70. Behbehani R, Al-Hassan AA, Al-Khars A, Sriraman D, Alroughani R. Retinal nerve fiber layer thickness and neurologic disability in relapsing-remitting multiple sclerosis. J Neurol Sci. 2015;359:305–8.

    Article  PubMed  Google Scholar 

  71. • Martinez-Lapiscina EH, Arnow S, Wilson JA, Saidha S, Preiningerova JL, Oberwahrenbrock T, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15:574–84. This study provides the strongest evidence so far to support the role of OCT as a predictor of disability worsening in patients with multiple sclerosis.

    Article  PubMed  Google Scholar 

  72. El Ayoubi NK, Ghassan S, Said M, Allam J, Darwish H, Khoury SJ. Retinal measures correlate with cognitive and physical disability in early multiple sclerosis. J Neurol. 2016;263:2287–95.

    Article  PubMed  Google Scholar 

  73. Anhoque CF, Biccas-Neto L, Domingues SC, Teixeira AL, Domingues RB. Cognitive impairment and optic nerve axonal loss in patients with clinically isolated syndrome. Clin Neurol Neurosurg. 2013;115:1032–5.

    Article  CAS  PubMed  Google Scholar 

  74. Wieder L, Gade G, Pech LM, Zimmermann H, Wernecke KD, Dorr JM, et al. Low contrast visual acuity testing is associated with cognitive performance in multiple sclerosis: a cross-sectional pilot study. BMC Neurol. 2013;13:167.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Garcia-Martin E, Rodriguez-Mena D, Herrero R, Almarcegui C, Dolz I, Martin J, et al. Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology. 2013;81:76–83.

    Article  CAS  PubMed  Google Scholar 

  76. Edgar JM, Griffiths IR. White matter structure—chapter 5: a microscopist’s view. Elsevier 2009; 74-103.

  77. Serbecic N, Aboul-Enein F, Beutelspacher SC, Vass C, Kristoferitsch W, Lassmann H, et al. High resolution spectral domain optical coherence tomography (SD-OCT) in multiple sclerosis: the first follow up study over two years. PLoS One. 2011;6:e19843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Narayanan D, Cheng H, Bonem KN, Saenz R, Tang RA, Frishman LJ. Tracking changes over time in retinal nerve fiber layer and ganglion cell-inner plexiform layer thickness in multiple sclerosis. Mult Scler. 2014;20:1331–41.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Graham EC, You Y, Yiannikas C, Garrick R, Parratt J, Barnett MH, et al. Progressive loss of retinal ganglion cells and axons in nonoptic neuritis eyes in multiple sclerosis: a longitudinal optical coherence tomography study. Invest Ophthalmol Vis Sci. 2016;57:2311–7.

    Article  PubMed  Google Scholar 

  80. Balk LJ, Cruz-Herranz A, Albrecht P, Arnow S, Gelfand JM, Tewarie P, et al. Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study. J Neurol. 2016;263:1323–31.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nguyen A-L, Lam J, White R, Carruthers R, Traboulsee A. Prospective study of retinal nerve fibre layer thickness in alemtuzumab treated multiple sclerosis patients. Neurology 2016.

  82. • Button J, Al-Louzi O, Lang A, Bhargava P, Newsome SD, Frohman T, et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: a retrospective study. Neurology. 2017;88(6):525–32. This study highlights the potential role of OCT in monitoring response to MS therapies.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena H. Martinez-Lapiscina MD phD.

Ethics declarations

Funding

Alexander U. Brandt received funding from the German Federal Ministry for Economic Affairs and Energy (BMWi Exist 03EFEBE079).

Elena H. Martinez-Lapiscina received funding from the Instituto de Salud Carlos III, Spain, and Fondo Europeo de Desarrollo Regional (FEDER; JR16/00006), Grant for MS Innovation and Marató TV3 Charitable Foundation.

Rachel Nolan declares no funding.

Shiv Saidha received funding from the Race to Erase MS and Genentech Corporation.

Conflict of Interest

Alexander U. Brandt has received travel reimbursement from Bayer, Biogen, Teva, and Novartis and consulting or speaker honoraria from Biogen, Teva, Heidelberg Engineering, Motognosis, and Nexus. He is a member of the working committee of International Multiple Sclerosis Visual System (IMSVISUAL) Consortium.

Elena H. Martinez-Lapiscina is a researcher in the OCTIMS Study, an observational study (which involves no specific drugs) to validate SD-OCT as a biomarker for multiple sclerosis, sponsored by Novartis. She has received speaking honoraria from Biogen and Genzyme and travel reimbursement from Genzyme, Roche, for international and national meetings over the last 3 years. She is a member of the working committee of the International Multiple Sclerosis Visual System (IMSVISUAL) Consortium.

Rachel Nolan is a member of the working committee of the International Multiple Sclerosis Visual System (IMSVISUAL) Consortium.

Shiv Saidha has received consulting fees from Medical Logix for the development of CME programs in neurology, consulting fees from Axon Advisors LLC, speaking honoraria from the National Association of Managed Care Physicians, Family Medicine Foundation of West Virginia, and Advanced Studies in Medicine, and served on scientific advisory boards for Biogen-Idec, Genzyme, Genentech Corporation, and Novartis. He received research support from the Race to Erase MS and Genentech Corporation. He is a member of the working committee of the International Multiple Sclerosis Visual System (IMSVISUAL) Consortium.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Multiple Sclerosis and Related Disorders

Alexander U. Brandt, Elena H. Martinez-Lapiscina, Rachel Nolan and Shiv Saidha contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, A.U., Martinez-Lapiscina, E.H., Nolan, R. et al. Monitoring the Course of MS With Optical Coherence Tomography. Curr Treat Options Neurol 19, 15 (2017). https://doi.org/10.1007/s11940-017-0452-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0452-7

Keywords

Navigation