Skip to main content
Log in

The Impact of Exercise and Athletic Training on Vascular Structure and Function

  • Sports Cardiology (M Wasfy, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Myocardial adaptation to athletics and exercise training is a well-described process that has garnered much interest over the past decades. By contrast, our understanding of how the vascular system adapts in the trained athlete remains limited. The goal of this review is to provide a comprehensive overview of the impact of exercise on structure and function of the extra-cardiac vascular system.

Recent findings

While structural changes in the size of the aorta are rare in young athletes, emerging data suggest that long-term athletic participation may be a risk factor for aortic dilation in middle-age and beyond. In addition, new findings show that even modest amounts of athletic training such as participation in an individual’s first marathon can have important salutary effects on vascular health.

Summary

Vascular adaptations represent an important part of the athletic phenotype and likely play an important role in the overall cardiovascular health of the trained athlete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Darling EA. The effects of training. Boston Med Surg J. 1899;141(10):229–33. https://doi.org/10.1056/NEJM189909071411001.

    Article  Google Scholar 

  2. Henschen S. Skidlauf und skidwettlauf: eine medizinische sportstudie. Mitt Med Klin Upsala. 1899;2.

  3. Baggish AL, Wang F, Weiner RB, Elinoff JM, Tournoux F, Boland A, et al. Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985). 2008;104(4):1121–8. https://doi.org/10.1152/japplphysiol.01170.2007.

    Article  Google Scholar 

  4. Elliott AD, La Gerche A. The right ventricle following prolonged endurance exercise: are we overlooking the more important side of the heart? A meta-analysis. Br J Sports Med. 2015;49(11):724–9. https://doi.org/10.1136/bjsports-2014-093895.

    Article  PubMed  Google Scholar 

  5. Iskandar A, Mujtaba MT, Thompson PD. Left atrium size in elite athletes. J Am Coll Cardiol Img. 2015;8(7):753–62. https://doi.org/10.1016/j.jcmg.2014.12.032.

    Article  Google Scholar 

  6. Kim JH, Noseworthy PA, McCarty D, Yared K, Weiner R, Wang F, et al. Significance of electrocardiographic right bundle branch block in trained athletes. Am J Cardiol. 2011;107(7):1083–9. https://doi.org/10.1016/j.amjcard.2010.11.037.

    Article  PubMed  Google Scholar 

  7. Clausen JP. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol Rev. 1977;57(4):779–815. https://doi.org/10.1152/physrev.1977.57.4.779.

    Article  CAS  PubMed  Google Scholar 

  8. Boraita A, Heras ME, Morales F, Marina-Breysse M, Canda A, Rabadan M, et al. Reference values of aortic root in male and female white elite athletes according to sport. Circ Cardiovasc Imaging. 2016;9(10). https://doi.org/10.1161/CIRCIMAGING.116.005292.

  9. Gati S, Malhotra A, Sedgwick C, Papamichael N, Dhutia H, Sharma R, et al. Prevalence and progression of aortic root dilatation in highly trained young athletes. Heart. 2019. https://doi.org/10.1136/heartjnl-2018-314,288.

  10. Kinoshita N, Mimura J, Obayashi C, Katsukawa F, Onishi S, Yamazaki H. Aortic root dilatation among young competitive athletes: echocardiographic screening of 1929 athletes between 15 and 34 years of age. Am Heart J. 2000;139(4):723–8.

    Article  CAS  Google Scholar 

  11. Pelliccia A, Di Paolo FM, De Blasiis E, Quattrini FM, Pisicchio C, Guerra E, et al. Prevalence and clinical significance of aortic root dilation in highly trained competitive athletes. Circulation. 2010;122(7):698–706, 3 p following. https://doi.org/10.1161/CIRCULATIONAHA.109.901074.

    Article  PubMed  Google Scholar 

  12. D’Andrea A, Cocchia R, Riegler L, Scarafile R, Salerno G, Gravino R, et al. Aortic root dimensions in elite athletes. Am J Cardiol. 2010;105(11):1629–34. https://doi.org/10.1016/j.amjcard.2010.01.028.

    Article  PubMed  Google Scholar 

  13. Lincoln A, Vogel R, Tucker A, Dunn R, Castle L, Kovacs R. Abstract 16,812: Aortic size in National Football League Scouting Combine participants. Circulation. 2013;128(Suppl 22):A16812–A.

    Google Scholar 

  14. Engel DJ, Schwartz A, Homma S. Athletic cardiac remodeling in US professional basketball players. JAMA Cardiol. 2016;1(1):80–7. https://doi.org/10.1001/jamacardio.2015.0252.

    Article  PubMed  Google Scholar 

  15. Shames S, Bello NA, Schwartz A, Homma S, Patel N, Garza J, et al. Echocardiographic characterization of female professional basketball players in the US. JAMA Cardiol. 2020. https://doi.org/10.1001/jamacardio.2020.0988.

  16. Braverman AC, Harris KM, Kovacs RJ, Maron BJ. American Heart Association E, Arrhythmias Committee of Council on Clinical Cardiology CoCDiYCoC et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 7: aortic diseases, including Marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e303–9. https://doi.org/10.1161/CIR.0000000000000243.

    Article  PubMed  Google Scholar 

  17. Iskandar A, Thompson PD. A meta-analysis of aortic root size in elite athletes. Circulation. 2013;127(7):791–8. https://doi.org/10.1161/CIRCULATIONAHA.112.000974.

    Article  PubMed  Google Scholar 

  18. Gentry JLCD, Joshi PH, Maroules CD, Ayers CR, De Lemos JA, Aagaard P, et al. Ascending aortic dimensions in former National Football League athletes. Circ Cardiovasc Imaging. 2017.

  19. Churchill T, Groezinger E, Kim JH, Loomer G, Guseh J, Wasfy M, et al. Association of Ascending Aortic Dilatation and Long-term Endurance Exercise. JAMA Cardiol. 2020;5(5). This study of middle-aged long-term endurance athletes demonstrated increased prevalence of aortic dilation in this population, raising the possibility of long-term athletics as a risk factor for aortic enlargement.

  20. Green DJ, Spence A, Rowley N, Thijssen DH, Naylor LH. Vascular adaptation in athletes: is there an ‘athlete’s artery’? Exp Physiol. 2012;97(3):295–304. https://doi.org/10.1113/expphysiol.2011.058826.

    Article  PubMed  Google Scholar 

  21. Currens JH, White PD. Half a century of running. Clinical, physiologic and autopsy findings in the case of Clarence DeMar (“Mr. Marathon”). N Engl J Med. 1961;265:988–93. https://doi.org/10.1056/NEJM196111162652006.

    Article  CAS  PubMed  Google Scholar 

  22. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87(4):1076–82. https://doi.org/10.1161/01.cir.87.4.1076.

    Article  CAS  PubMed  Google Scholar 

  23. Kozakova M, Galetta F, Gregorini L, Bigalli G, Franzoni F, Giusti C, et al. Coronary vasodilator capacity and epicardial vessel remodeling in physiological and hypertensive hypertrophy. Hypertension. 2000;36(3):343–9. https://doi.org/10.1161/01.hyp.36.3.343.

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen PK, Terashima M, Fair JM, Varady A, Taylor-Piliae RE, Iribarren C, et al. Physical activity in older subjects is associated with increased coronary vasodilation: the ADVANCE study. J Am Coll Cardiol Img. 2011;4(6):622–9. https://doi.org/10.1016/j.jcmg.2011.05.001.

    Article  Google Scholar 

  25. Zeppilli P, Vannicelli R, Santini C, Dello Russo A, Picani C, Palmieri V, et al. Echocardiographic size of conductance vessels in athletes and sedentary people. Int J Sports Med. 1995;16(1):38–44. https://doi.org/10.1055/s-2007-972,961.

    Article  CAS  PubMed  Google Scholar 

  26. Naylor LH, O’Driscoll G, Fitzsimons M, Arnolda LF, Green DJ. Effects of training resumption on conduit arterial diameter in elite rowers. Med Sci Sports Exerc. 2006;38(1):86–92. https://doi.org/10.1249/01.mss.0000181220.03855.1c.

    Article  PubMed  Google Scholar 

  27. Petersen SE, Wiesmann F, Hudsmith LE, Robson MD, Francis JM, Selvanayagam JB, et al. Functional and structural vascular remodeling in elite rowers assessed by cardiovascular magnetic resonance. J Am Coll Cardiol. 2006;48(4):790–7. https://doi.org/10.1016/j.jacc.2006.04.078.

    Article  PubMed  Google Scholar 

  28. Rognmo O, Bjornstad TH, Kahrs C, Tjonna AE, Bye A, Haram PM, et al. Endothelial function in highly endurance-trained men: effects of acute exercise. J Strength Cond Res. 2008;22(2):535–42. https://doi.org/10.1519/JSC.0b013e31816354b1.

    Article  PubMed  Google Scholar 

  29. Rowley NJ, Dawson EA, Birk GK, Cable NT, George K, Whyte G, et al. Exercise and arterial adaptation in humans: uncoupling localized and systemic effects. J Appl Physiol (1985). 2011;110(5):1190–5. https://doi.org/10.1152/japplphysiol.01371.2010.

    Article  Google Scholar 

  30. Miyachi M, Tanaka H, Yamamoto K, Yoshioka A, Takahashi K, Onodera S. Effects of one-legged endurance training on femoral arterial and venous size in healthy humans. J Appl Physiol (1985). 2001;90(6):2439–44. https://doi.org/10.1152/jappl.2001.90.6.2439.

    Article  CAS  Google Scholar 

  31. Zoeller RF, Angelopoulos TJ, Thompson BC, Wenta MR, Price TB, Thompson PD, et al. Vascular remodeling in response to 12 wk of upper arm unilateral resistance training. Med Sci Sports Exerc. 2009;41(11):2003–8. https://doi.org/10.1249/MSS.0b013e3181a70707.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green DJ, Hopman MT, Padilla J, Laughlin MH, Thijssen DH. Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev. 2017;97(2):495–528. https://doi.org/10.1152/physrev.00014.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension. 2010;55(2):312–8. https://doi.org/10.1161/HYPERTENSIONAHA.109.146282.

    Article  CAS  PubMed  Google Scholar 

  34. Birk GK, Dawson EA, Atkinson C, Haynes A, Cable NT, Thijssen DH, et al. Brachial artery adaptation to lower limb exercise training: role of shear stress. J Appl Physiol (1985). 2012;112(10):1653–8. https://doi.org/10.1152/japplphysiol.01489.2011.

    Article  Google Scholar 

  35. Dinenno FA, Tanaka H, Monahan KD, Clevenger CM, Eskurza I, DeSouza CA, et al. Regular endurance exercise induces expansive arterial remodelling in the trained limbs of healthy men. J Physiol. 2001;534(Pt 1):287–95. https://doi.org/10.1111/j.1469-7793.2001.00287.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galetta F, Franzoni F, Virdis A, Ghiadoni L, Taddei S, Salvetti A, et al. Endothelium-dependent vasodilation and carotid artery wall remodeling in athletes and sedentary subjects. Atherosclerosis. 2006;186(1):184–92. https://doi.org/10.1016/j.atherosclerosis.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

  37. Maessen MF, Eijsvogels TM, Hijmans-Kersten BT, Grotens A, Schreuder TH, Hopman MT, et al. Vascular function and structure in veteran athletes after myocardial infarction. Med Sci Sports Exerc. 2017;49(1):21–8. https://doi.org/10.1249/MSS.0000000000001075.

    Article  CAS  PubMed  Google Scholar 

  38. Abergel E, Linhart A, Chatellier G, Gariepy J, Ducardonnet A, Diebold B, et al. Vascular and cardiac remodeling in world class professional cyclists. Am Heart J. 1998;136(5):818–23. https://doi.org/10.1016/s0002-8703(98)70126-7.

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt-Trucksass A, Schmid A, Dorr B, Huonker M. The relationship of left ventricular to femoral artery structure in male athletes. Med Sci Sports Exerc. 2003;35(2):214–9; discussion 20. https://doi.org/10.1249/01.MSS.0000048637.26711.93.

    Article  PubMed  Google Scholar 

  40. Schmidt-Trucksass A, Schmid A, Brunner C, Scherer N, Zach G, Keul J, et al. Arterial properties of the carotid and femoral artery in endurance-trained and paraplegic subjects. J Appl Physiol (1985). 2000;89(5):1956–63. https://doi.org/10.1152/jappl.2000.89.5.1956.

    Article  CAS  Google Scholar 

  41. Rowley NJ, Dawson EA, Hopman MT, George KP, Whyte GP, Thijssen DH, et al. Conduit diameter and wall remodeling in elite athletes and spinal cord injury. Med Sci Sports Exerc. 2012;44(5):844–9. https://doi.org/10.1249/MSS.0b013e31823f6887.

    Article  PubMed  Google Scholar 

  42. Green DJ, Swart A, Exterkate A, Naylor LH, Black MA, Cable NT, et al. Impact of age, sex and exercise on brachial and popliteal artery remodelling in humans. Atherosclerosis. 2010;210(2):525–30. https://doi.org/10.1016/j.atherosclerosis.2010.01.048.

    Article  CAS  PubMed  Google Scholar 

  43. Thijssen DH, Scholten RR, van den Munckhof IC, Benda N, Green DJ, Hopman MT. Acute change in vascular tone alters intima-media thickness. Hypertension. 2011;58(2):240–6. https://doi.org/10.1161/HYPERTENSIONAHA.111.173583.

    Article  CAS  PubMed  Google Scholar 

  44. Goldhammer E, Mesnick N, Abinader EG, Sagiv M. Dilated inferior vena cava: a common echocardiographic finding in highly trained elite athletes. J Am Soc Echocardiogr. 1999;12(11):988–93.

    Article  CAS  Google Scholar 

  45. Hedman K, Nylander E, Henriksson J, Bjarnegard N, Brudin L, Tamas E. Echocardiographic characterization of the inferior vena cava in trained and untrained females. Ultrasound Med Biol. 2016;42(12):2794–802. https://doi.org/10.1016/j.ultrasmedbio.2016.07.003.

    Article  PubMed  Google Scholar 

  46. Green DJ, Fowler DT, O’Driscoll JG, Blanksby BA, Taylor RR. Endothelium-derived nitric oxide activity in forearm vessels of tennis players. J Appl Physiol (1985). 1996;81(2):943–8. https://doi.org/10.1152/jappl.1996.81.2.943.

    Article  CAS  Google Scholar 

  47. Green DJ, Cable NT, Fox C, Rankin JM, Taylor RR. Modification of forearm resistance vessels by exercise training in young men. J Appl Physiol (1985). 1994;77(4):1829–33. https://doi.org/10.1152/jappl.1994.77.4.1829.

    Article  CAS  Google Scholar 

  48. DeVan AE, Seals DR. Vascular health in the ageing athlete. Exp Physiol. 2012;97(3):305–10. https://doi.org/10.1113/expphysiol.2011.058792.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nualnim N, Barnes JN, Tarumi T, Renzi CP, Tanaka H. Comparison of central artery elasticity in swimmers, runners, and the sedentary. Am J Cardiol. 2011;107(5):783–7. https://doi.org/10.1016/j.amjcard.2010.10.062.

    Article  PubMed  Google Scholar 

  50. Green DJ, Rowley N, Spence A, Carter H, Whyte G, George K, et al. Why is not flow-mediated dilation enhanced in athletes? Med Sci Sports Exerc. 2013;45(1):75–82. https://doi.org/10.1249/MSS.0b013e318269affe.

    Article  PubMed  Google Scholar 

  51. Montero D, Padilla J, Diaz-Canestro C, Muris DM, Pyke KE, Obert P, et al. Flow-mediated dilation in athletes: influence of aging. Med Sci Sports Exerc. 2014;46(11):2148–58. https://doi.org/10.1249/MSS.0000000000000341.

    Article  PubMed  Google Scholar 

  52. •• Campbell A, Grace F, Ritchie L, Beaumont A, Sculthorpe N. Long-term aerobic exercise improves vascular function into old age: a systematic review, meta-analysis and meta regression of observational and interventional studies. Front Physiol. 2019;10:31. https://doi.org/10.3389/fphys.2019.00031. Meta-analysis and systematic review of studies assessing vasodilatory function as relates to exercise training.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand. 1958;44(3–4):255–72. https://doi.org/10.1111/j.1748-1716.1958.tb01626.x.

    Article  CAS  PubMed  Google Scholar 

  54. Thijssen DH, Willems L, van den Munckhof I, Scholten R, Hopman MT, Dawson EA, et al. Impact of wall thickness on conduit artery function in humans: is there a “Folkow” effect? Atherosclerosis. 2011;217(2):415–9. https://doi.org/10.1016/j.atherosclerosis.2011.03.003.

    Article  CAS  PubMed  Google Scholar 

  55. Guseh JS, Churchill TW, Yeri A, Lo C, Brown M, Houstis NE, et al. An expanded repertoire of intensity-dependent exercise-responsive plasma proteins tied to loci of human disease risk. Sci Rep. 2020;10(1):10831. https://doi.org/10.1038/s41598-020-67,669-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goto C, Higashi Y, Kimura M, Noma K, Hara K, Nakagawa K, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108(5):530–5. https://doi.org/10.1161/01.CIR.0000080893.55729.28.

    Article  PubMed  Google Scholar 

  57. Davies CT, Few JD. Effects of exercise on adrenocortical function. J Appl Physiol. 1973;35(6):887–91. https://doi.org/10.1152/jappl.1973.35.6.887.

    Article  CAS  PubMed  Google Scholar 

  58. Yoshida N, Ikeda H, Sugi K, Imaizumi T. Impaired endothelium-dependent and -independent vasodilation in young female athletes with exercise-associated amenorrhea. Arterioscler Thromb Vasc Biol. 2006;26(1):231–2. https://doi.org/10.1161/01.ATV.0000199102.60747.18.

    Article  CAS  PubMed  Google Scholar 

  59. Vitarelli A, Capotosto L, Placanica G, Caranci F, Pergolini M, Zardo F, et al. Comprehensive assessment of biventricular function and aortic stiffness in athletes with different forms of training by three-dimensional echocardiography and strain imaging. Eur Heart J Cardiovasc Imaging. 2013;14(10):1010–20. https://doi.org/10.1093/ehjci/jes298.

    Article  PubMed  Google Scholar 

  60. Gates PE, Tanaka H, Graves J, Seals DR. Left ventricular structure and diastolic function with human ageing. Relation to habitual exercise and arterial stiffness. Eur Heart J. 2003;24(24):2213–20. https://doi.org/10.1016/j.ehj.2003.09.026.

    Article  PubMed  Google Scholar 

  61. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, et al. Relationship between arterial stiffness and athletic training programs in young adult men. Am J Hypertens. 2007;20(9):967–73. https://doi.org/10.1016/j.amjhyper.2007.05.001.

    Article  PubMed  Google Scholar 

  62. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2014;9(10):e110034. https://doi.org/10.1371/journal.pone.0110034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cook JN, DeVan AE, Schleifer JL, Anton MM, Cortez-Cooper MY, Tanaka H. Arterial compliance of rowers: implications for combined aerobic and strength training on arterial elasticity. Am J Physiol Heart Circ Physiol. 2006;290(4):H1596–600. https://doi.org/10.1152/ajpheart.01054.2005.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102(11):1270–5. https://doi.org/10.1161/01.cir.102.11.1270.

    Article  CAS  PubMed  Google Scholar 

  65. Dupont AC, Poussel M, Hossu G, Marie PY, Chenuel B, Felblinger J, et al. Aortic compliance variation in long male distance triathletes: a new insight into the athlete’s artery? J Sci Med Sport. 2017;20(6):539–42. https://doi.org/10.1016/j.jsams.2016.10.009. This study compares vascular structure and function in experienced triathletes and notably includes both cross-sectional and longitudinal component.

    Article  PubMed  Google Scholar 

  66. Rakobowchuk M, Tanguay S, Burgomaster KA, Howarth KR, Gibala MJ, MacDonald MJ. Sprint interval and traditional endurance training induce similar improvements in peripheral arterial stiffness and flow-mediated dilation in healthy humans. Am J Phys Regul Integr Comp Phys. 2008;295(1):R236–42. https://doi.org/10.1152/ajpregu.00069.2008.

    Article  CAS  Google Scholar 

  67. Erol MK, Yilmaz M, Oztasyonar Y, Sevimli S, Senocak H. Aortic distensibility is increasing in elite athletes. Am J Cardiol. 2002;89(8):1002–4. https://doi.org/10.1016/s0002-9149(02)02260-9.

    Article  PubMed  Google Scholar 

  68. Kasikcioglu E, Oflaz H, Akhan H, Kayserilioglu A, Mercanoglu F, Umman B, et al. Left ventricular remodeling and aortic distensibility in elite power athletes. Heart Vessel. 2004;19(4):183–8. https://doi.org/10.1007/s00380-004-0765-9.

    Article  Google Scholar 

  69. Kim JH, Sher S, Wang F, Berkstresser B, Shoop JL, Galante A, et al. Impact of American-style football participation on vascular function. Am J Cardiol. 2015;115(2):262–7. https://doi.org/10.1016/j.amjcard.2014.10.033.

    Article  PubMed  Google Scholar 

  70. D’Andrea A, Cocchia R, Riegler L, Salerno G, Scarafile R, Citro R, et al. Aortic stiffness and distensibility in top-level athletes. J Am Soc Echocardiogr. 2012;25(5):561–7. https://doi.org/10.1016/j.echo.2011.12.021.

    Article  PubMed  Google Scholar 

  71. Miyachi M, Kawano H, Sugawara J, Takahashi K, Hayashi K, Yamazaki K, et al. Unfavorable effects of resistance training on central arterial compliance: a randomized intervention study. Circulation. 2004;110(18):2858–63. https://doi.org/10.1161/01.CIR.0000146380.08401.99.

    Article  PubMed  Google Scholar 

  72. Bhuva AN, D’Silva A, Torlasco C, Jones S, Nadarajan N, Van Zalen J, et al. Training for a first-time marathon reverses age-related aortic stiffening. J Am Coll Cardiol. 2020;75(1):60–71. https://doi.org/10.1016/j.jacc.2019.10.045. A key exercise intervention paper, work by Bhuva et al., evaluated previously sedentary individuals’ training for their first marathon and showed important improvements in metrics of vascular health.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. Churchill MD.

Ethics declarations

Conflict of Interest

Timothy W. Churchill declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sports Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churchill, T.W. The Impact of Exercise and Athletic Training on Vascular Structure and Function. Curr Treat Options Cardio Med 22, 59 (2020). https://doi.org/10.1007/s11936-020-00861-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00861-7

Keywords

Navigation