Skip to main content

Advertisement

Log in

Sex Differences in HFpEF

  • Women’s Health (A Sarma, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Heart failure with preserved ejection fraction (HFpEF) disproportionately affects women. Though no unifying theory exists to explain this phenomenon, the purpose of this review is to explore the many factors that likely contribute to this female predominance.

Recent findings

Inflammation and microvascular ischemia are increasingly thought to play a role in promoting HFpEF, as is the presence of cardiometabolic traits including hypertension, diabetes, and obesity. All of these factors are more common in women. Female-specific risk factors, including a history of hypertensive disorders of pregnancy and sequelae of breast cancer therapy, can further contribute to a woman’s risk. No targeted therapies exist for the management of HFpEF, but some therapies, including sacubitril/valsartan, have shown differential benefit in women. Though women with HFpEF have better outcomes than men, they have worse self-reported quality of life. More work is required to address these and other sex disparities.

Summary

This review summarizes what is known about the pathophysiology of HFpEF, leading theories to explain this female predominance, sex-specific differences in the objective findings of HFpEF, outcomes, and response to therapies, and what work remains to be done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lloyd-Jones DMM, Larson MGS, Leip EPM, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the Framingham heart study. Circulation. 2002;106(24):3068–72. https://doi.org/10.1161/01.cir.0000039105.49749.6f.

    Article  PubMed  Google Scholar 

  2. Bleumink G, Knetsch A, Sturkenboom M, Straus S, Hofman A, Deckers J, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure. Eur Heart J. 2004;25(18):1614–9. https://doi.org/10.1016/j.ehj.2004.06.038.

    Article  PubMed  Google Scholar 

  3. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19. https://doi.org/10.1161/HHF.0b013e318291329a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ho JE, Enserro D, Brouwers FP, Kizer JR, Shah SJ, Psaty BM, et al. Predicting heart failure with preserved and reduced ejection fraction: the International Collaboration on Heart Failure Subtypes. Circ Heart Fail. 2016;9(6):e003116. https://doi.org/10.1161/CIRCHEARTFAILURE.115.003116.

    Article  PubMed  Google Scholar 

  5. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e292. https://doi.org/10.1161/01.cir.0000441139.02102.80.

    Article  Google Scholar 

  6. Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J. 2011;32(6):670–9. https://doi.org/10.1093/eurheartj/ehq426.

    Article  PubMed  Google Scholar 

  7. Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, et al. Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2017;70(17):2186–200. https://doi.org/10.1016/j.jacc.2017.09.006.

    Article  PubMed  Google Scholar 

  8. Benjamin EJM, Virani SS, Callaway CW, Chamberlain AM, Chang ARM, Cheng SM, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492. https://doi.org/10.1161/CIR.0000000000000558.

    Article  PubMed  Google Scholar 

  9. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. https://doi.org/10.1016/j.jacc.2013.05.019.

    Article  PubMed  Google Scholar 

  10. • Parikh KS, Sharma K, Fiuzat M, Surks HK, George JT, Honarpour N, et al. Heart failure with preserved ejection fraction expert panel report: current controversies and implications for clinical trials. JACC: Heart Failure. 2018;6(8):619–32. https://doi.org/10.1016/j.jchf.2018.06.008. This paper identifies some of the current controversies and unanswered questions in conceptualizing and defining HFpEF, and the implications these have on developing clinical trials.

    Article  PubMed  Google Scholar 

  11. •• Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Failure. 2016;18(8):891–975. https://doi.org/10.1002/ejhf.592. Updated expert consensus guidelines on the management of heart failure.

    Article  Google Scholar 

  12. Katz DH, Beussink L, Sauer AJ, Freed BH, Burke MA, Shah SJ. Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am J Cardiol. 2013;112(8):1158–64. https://doi.org/10.1016/j.amjcard.2013.05.061.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18. https://doi.org/10.1016/j.hfc.2014.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  14. den Ruijter H, Pasterkamp G, Rutten FH, Lam CSP, Chi C, Tan KH, et al. Heart failure with preserved ejection fraction in women: the Dutch Queen of Hearts program. Neth Hear J. 2015;23(2):89–93. https://doi.org/10.1007/s12471-014-0613-1.

    Article  Google Scholar 

  15. Yancy CW, Mariell J, Biykem B, Javed B, Casey Donald E, Colvin Monica M, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–61. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  PubMed  Google Scholar 

  16. Ho JE, Zern EK, Wooster L, Bailey CS, Cunningham T, Eisman ASB, et al. Differential clinical profiles, exercise responses, and outcomes associated with existing HFpEF definitions. Circulation. 2019;140(5):353–65. https://doi.org/10.1161/CIRCULATIONAHA.118.039136.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Maurer MS, Mancini D. HFpEF: is splitting into distinct phenotypes by comorbidities the pathway forward? J Am Coll Cardiol. 2014;64(6):550–2. https://doi.org/10.1016/j.jacc.2014.06.010.

    Article  PubMed  Google Scholar 

  18. • Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71. https://doi.org/10.1016/j.jacc.2013.02.092. An important manuscript in highlighting the role of comorbidities in driving HFpEF and the role of inflammation in particular.

    Article  PubMed  Google Scholar 

  19. Daubert MA, Douglas PS. Primary prevention of heart failure in women. JACC: Heart Failure. 2019;7(3):181–91. https://doi.org/10.1016/j.jchf.2019.01.011.

    Article  PubMed  Google Scholar 

  20. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the acute decompensated heart failure National Registry (ADHERE) database. J Am Coll Cardiol. 2006;47(1):76–84. https://doi.org/10.1016/j.jacc.2005.09.022.

    Article  PubMed  Google Scholar 

  21. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update. Circulation. 2015;131(4):e29–322. https://doi.org/10.1161/CIR.0000000000000152.

    Article  PubMed  Google Scholar 

  22. Lam CSP, Carson PE, Anand IS, Rector TS, Kuskowski M, Komajda M, et al. Sex differences in clinical characteristics and outcomes in elderly patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2012;5(5):571–8. https://doi.org/10.1161/CIRCHEARTFAILURE.112.970061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation. 2018;138(2):198–205. https://doi.org/10.1161/CIRCULATIONAHA.118.034271.

    Article  PubMed  Google Scholar 

  24. Ho JE, Gona P, Pencina MJ, Tu JV, Austin PC, Vasan RS, et al. Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community. Eur Heart J. 2012;33(14):1734–41. https://doi.org/10.1093/eurheartj/ehs070.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355(3):251–9. https://doi.org/10.1056/NEJMoa052256.

    Article  CAS  PubMed  Google Scholar 

  26. Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61(1):96–103. https://doi.org/10.1016/j.jacc.2012.08.997.

    Article  PubMed  Google Scholar 

  27. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, et al. Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med. 2006;355(3):260–9. https://doi.org/10.1056/NEJMoa051530.

    Article  CAS  PubMed  Google Scholar 

  28. •• Lau ES, Cunningham T, Hardin KM, Liu E, Malhotra R, Nayor M, et al. Sex differences in cardiometabolic traits and determinants of exercise capacity in heart failure with preserved ejection fraction. JAMA Cardiol. 2020;5(1):30–7. https://doi.org/10.1001/jamacardio.2019.4150. An important paper highlighting the role of cardiometabolic comorbidities in driving sex differences in HFpEF distribution.

    Article  PubMed  Google Scholar 

  29. Murphy SP, Kakkar R, McCarthy CP, Januzzi JL. Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(11):1324–40. https://doi.org/10.1016/j.jacc.2020.01.014.

    Article  PubMed  Google Scholar 

  30. Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL, Paulus WJ, et al. Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail. 2013;15(12):1350–62. https://doi.org/10.1093/eurjhf/hft106.

    Article  CAS  PubMed  Google Scholar 

  31. van Empel V, Brunner-La Rocca H-P. Inflammation in HFpEF: key or circumstantial? Int J Cardiol. 2015;189:259–63. https://doi.org/10.1016/j.ijcard.2015.04.110.

    Article  PubMed  Google Scholar 

  32. Koller L, Kleber M, Goliasch G, Sulzgruber P, Scharnagl H, Silbernagel G, et al. C-reactive protein predicts mortality in patients referred for coronary angiography and symptoms of heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(7):758–66. https://doi.org/10.1002/ejhf.104.

    Article  CAS  PubMed  Google Scholar 

  33. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, et al. Inflammatory markers and incident heart failure risk in older adults. J Am Coll Cardiol. 2010;55(19):2129–37. https://doi.org/10.1016/j.jacc.2009.12.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tadic M, Cuspidi C, Plein S, Belyavskiy E, Heinzel F, Galderisi M. Sex and heart failure with preserved ejection fraction: from pathophysiology to clinical studies. J Clin Med. 2019;8:792. https://doi.org/10.3390/jcm8060792.

    Article  CAS  PubMed Central  Google Scholar 

  35. • Beale AL, Nanayakkara S, Segan L, Mariani JA, Maeder MT, van Empel V, et al. Sex differences in heart failure with preserved ejection fraction pathophysiology: a detailed invasive hemodynamic and echocardiographic analysis. J Am Coll Cardiol HF. 2019;7(3):239–49. https://doi.org/10.1016/j.jchf.2019.01.004. One of the few papers examining sex-specific differences in HFpEF physiology, with an emphasis on both invasive and non-invasive diagnostics.

    Article  Google Scholar 

  36. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38. https://doi.org/10.1038/nri.2016.90.

    Article  CAS  PubMed  Google Scholar 

  37. Khera A, McGuire DK, Murphy SA, Stanek HG, Das SR, Vongpatanasin W, et al. Race and gender differences in C-reactive protein levels. J Am Coll Cardiol. 2005;46(3):464–9. https://doi.org/10.1016/j.jacc.2005.04.051.

    Article  CAS  PubMed  Google Scholar 

  38. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001;2(9):777–80. https://doi.org/10.1038/ni0901-777.

    Article  CAS  PubMed  Google Scholar 

  39. Mauricio R, Patel KV, Agusala V, Singh K, Lewis A, Ayers C, et al. Sex differences in cardiac function, biomarkers and exercise performance in heart failure with preserved ejection fraction: findings from the RELAX trial. Eur J Heart Fail. 2019;21(11):1476–9. https://doi.org/10.1002/ejhf.1554.

    Article  PubMed  Google Scholar 

  40. Jenny NS, Cushman M. C-reactive protein. Circ Res. 2014;114(4):596–7. https://doi.org/10.1161/CIRCRESAHA.114.303216.

    Article  CAS  PubMed  Google Scholar 

  41. Kaptoge S, Seshasai SRK, Gao P, Freitag DF, Butterworth AS, Borglykke A, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35(9):578–89. https://doi.org/10.1093/eurheartj/eht367.

    Article  CAS  PubMed  Google Scholar 

  42. Obokata M, Reddy YNV, Melenovsky V, Kane GC, Olson TP, Jarolim P, et al. Myocardial injury and cardiac reserve in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2018;72(1):29–40. https://doi.org/10.1161/CIRCULATIONAHA.116.024822.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation. 2015;131(6):550–9. https://doi.org/10.1161/CIRCULATIONAHA.114.009625.

    Article  PubMed  Google Scholar 

  44. Elgendy IY, Pepine CJ. Heart failure with preserved ejection fraction: is ischemia due to coronary microvascular dysfunction a mechanistic factor? Am J Med. 2019;132(6):692–7. https://doi.org/10.1016/j.amjmed.2018.12.038.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, et al. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859–3868c. https://doi.org/10.1161/CIRCHEARTFAILURE.112.970061.

    Article  CAS  PubMed  Google Scholar 

  46. Hwang S-J, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63(25):2817–27. https://doi.org/10.1016/j.jacc.2014.03.034.

    Article  PubMed  Google Scholar 

  47. Srivaratharajah K, Coutinho T, de Kemp R, Liu P, Haddad H, Stadnick E, et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail. 2016;9(7):e002562. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002562.

    Article  PubMed  Google Scholar 

  48. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840–9. https://doi.org/10.1093/eurheartj/ehx721.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma K, Al Rifai M, Ahmed HM, Dardari Z, Silverman MG, Yeboah J, et al. Usefulness of coronary artery calcium to predict heart failure with preserved ejection fraction in men versus women (from the multi-ethnic study of atherosclerosis). Am J Cardiol. 2017;120(10):1847–53. https://doi.org/10.1016/j.amjcard.2017.07.089.

    Article  CAS  PubMed  Google Scholar 

  50. Bairey Merz CN, Kelsey SF, Pepine CJ, Reichek N, Reis SE, Rogers WJ, et al. The women’s ischemia syndrome evaluation (WISE) study: protocol design, methodology and feasibility report. J Am Coll Cardiol. 1999;33(6):1453–61. https://doi.org/10.1016/S0735-1097(99)00082-0.

    Article  Google Scholar 

  51. Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan R-S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439–50. https://doi.org/10.1093/eurheartj/ehy531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC: Heart Failure. 2016;4(4):312–24. https://doi.org/10.1016/j.jchf.2015.10.007.

    Article  PubMed  Google Scholar 

  53. Crea F, Bairey Merz CN, Beltrame JF, Kaski JC, Ogawa H, Ong P, et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473–7. https://doi.org/10.1093/eurheartj/ehw461.

    Article  CAS  PubMed  Google Scholar 

  54. Maeder MT, Thompson BR, Brunner-La Rocca H-P, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J Am Coll Cardiol. 2010;56(11):855–63. https://doi.org/10.1016/j.jacc.2010.04.040.

    Article  PubMed  Google Scholar 

  55. Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA. Age- and gender-related ventricular-vascular stiffening. Circulation. 2005;112(15):2254–62. https://doi.org/10.1161/CIRCULATIONAHA.105.541078.

    Article  PubMed  Google Scholar 

  56. Gori M, Lam CSP, Gupta DK, Santos ABS, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(5):535–42. https://doi.org/10.1002/ejhf.67.

    Article  PubMed  Google Scholar 

  57. Mentz RJ, Kelly JP, von Lueder TG, Voors AA, Lam CSP, Cowie MR, et al. Noncardiac comorbidities in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol. 2014;64(21):2281–93. https://doi.org/10.1016/j.jacc.2014.08.036.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lieb W, Xanthakis V, Sullivan LM, Aragam J, Pencina MJ, Larson MG, et al. Longitudinal tracking of left ventricular mass over the adult life course: clinical correlates of short- and long-term change in the Framingham offspring study. Circulation. 2009;119(24):3085–92. https://doi.org/10.1161/CIRCULATIONAHA.108.824243.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Subramanya V, Zhao D, Ouyang P, Lima JA, Vaidya D, Ndumele CE, et al. Sex hormone levels and change in left ventricular structure among men and post-menopausal women: the multi-ethnic study of atherosclerosis (MESA). Maturitas. 2018;108:37–44. https://doi.org/10.1016/j.maturitas.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  60. Meyer S, van der Meer P, Massie BM, O’Connor CM, Metra M, Ponikowski P, et al. Sex-specific acute heart failure phenotypes and outcomes from PROTECT. Eur J Heart Fail. 2013;15(12):1374–81. https://doi.org/10.1093/eurjhf/hft115.

    Article  PubMed  Google Scholar 

  61. Meyer S, Brouwers FP, Voors AA, Hillege HL, de Boer RA, Gansevoort RT, et al. Sex differences in new-onset heart failure. Clin Res Cardiol. 2015;104(4):342–50. https://doi.org/10.1007/s00392-014-0788-x.

    Article  PubMed  Google Scholar 

  62. Eaton CB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quddus A, et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ Heart Fail. 2016;9(10):e002883. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002883.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Savji N, Meijers WC, Bartz TM, Bhambhani V, Cushman M, Nayor M, et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC: Heart Failure. 2018;6(8):701–9. https://doi.org/10.1016/j.jchf.2018.05.018.

    Article  PubMed  Google Scholar 

  64. Ho JE, Lyass A, Lee DS, Vasan RS, Kannel WB, Larson MG, et al. Predictors of new-onset heart failure: differences in preserved versus reduced ejection fraction. Circ Heart Fail. 2013;6(2):279–86. https://doi.org/10.1161/CIRCHEARTFAILURE.112.972828.

    Article  PubMed  Google Scholar 

  65. Haass M, Kitzman DW, Anand IS, Miller A, Zile MR, Massie BM, et al. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: results from the Irbesartan in heart failure with preserved ejection fraction (I-PRESERVE) trial. Circ Heart Fail. 2011;4(3):324–31. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959890.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ventura HO, Lavie CJ, Mehra MR. Heart failure with preserved ejection fraction: the quest for a blood pressure goal. J Am Coll Cardiol. 2020;75(14):1657–8. https://doi.org/10.1016/j.jacc.2020.02.024.

    Article  PubMed  Google Scholar 

  67. Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64(6):541–9. https://doi.org/10.1016/j.jacc.2014.05.030.

    Article  PubMed  PubMed Central  Google Scholar 

  68. MacDonald MR, Petrie MC, Varyani F, Östergren J, Michelson EL, Young JB, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure. An analysis of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29(11):1377–85. https://doi.org/10.1093/eurheartj/ehn153.

    Article  PubMed  Google Scholar 

  69. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–4. https://doi.org/10.1001/jama.2015.4260.

    Article  CAS  PubMed  Google Scholar 

  70. Scantlebury DC, Borlaug BA. Why are women more likely than men to develop heart failure with preserved ejection fraction? Curr Opin Cardiol. 2011;26(6):562–8. https://doi.org/10.1097/HCO.0b013e32834b7faf.

    Article  PubMed  Google Scholar 

  71. Mendelsohn ME, Karas RH. Molecular and cellular basis of cardiovascular gender differences. Science. 2005;308(5728):1583–7. https://doi.org/10.1126/science.1112062.

    Article  CAS  PubMed  Google Scholar 

  72. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56(11):845–54. https://doi.org/10.1016/j.jacc.2010.03.077.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sabbatini AR, Kararigas G. Menopause-related estrogen decrease and the pathogenesis of HFpEF. J Am Coll Cardiol. 2020;75(9):1074–82. https://doi.org/10.1016/j.jacc.2019.12.049.

    Article  CAS  PubMed  Google Scholar 

  74. Gori M, Senni M, Gupta DK, Charytan DM, Kraigher-Krainer E, Pieske B, et al. Association between renal function and cardiovascular structure and function in heart failure with preserved ejection fraction. Eur Heart J. 2014;35(48):3442–51. https://doi.org/10.1093/eurheartj/ehu254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miura M, Shiba N, Nochioka K, Takada T, Takahashi J, Kohno H, et al. Urinary albumin excretion in heart failure with preserved ejection fraction: an interim analysis of the CHART 2 study. Eur J Heart Fail. 2012;14(4):367–76. https://doi.org/10.1093/eurjhf/hfs001.

    Article  CAS  PubMed  Google Scholar 

  76. Oluleye OW, Rector TS, Win S, McMurray JJV, Zile MR, Komajda M, et al. History of atrial fibrillation as a risk factor in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2014;7(6):960–6. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001523.

    Article  PubMed  Google Scholar 

  77. Sartipy U, Dahlström U, Fu M, Lund LH. Atrial fibrillation in heart failure with Preserved, mid-range, and reduced ejection fraction. JACC: Heart Failure. 2017;5(8):565–74. https://doi.org/10.1016/j.jchf.2017.05.001.

    Article  PubMed  Google Scholar 

  78. Savarese G, Jonsson Å, Hallberg A-C, Dahlström U, Edner M, Lund LH. Prevalence of, associations with, and prognostic role of anemia in heart failure across the ejection fraction spectrum. Int J Cardiol. 2020;298:59–65. https://doi.org/10.1016/j.ijcard.2019.08.049.

    Article  PubMed  Google Scholar 

  79. • Honigberg MC, Lau ES, Jones AD, Coles A, Redfield MM, Lewis GD, et al. Sex differences in exercise capacity and quality of life in heart failure with preserved ejection fraction: a secondary analysis of the RELAX and NEAT-HFpEF trials. J Card Fail. 2020;26(3):276–80. https://doi.org/10.1016/j.cardfail.2020.01.001. An important paper examining sex differences in quality of life metrics in HFpEF, and found that though women with HFpEF have worse exercise tolerance, this does not seem to play as important a role in their quality of life as it does in men's.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bibbins-Domingo K, Lin F, Vittinghoff E, Barrett-Connor E, Grady D, Shlipak MG. Renal insufficiency as an independent predictor of mortality among women with heart failure. J Am Coll Cardiol. 2004;44(8):1593–600. https://doi.org/10.1016/j.jacc.2004.07.040.

    Article  PubMed  Google Scholar 

  81. Lazzeri C, Valente S, Tarquini R, Gensini GF. Cardiorenal syndrome caused by heart failure with preserved ejection fraction. Int J Nephrol. 2011;2011:634903–7. https://doi.org/10.4061/2011/634903.

    Article  PubMed  PubMed Central  Google Scholar 

  82. O’Neal WT, Sandesara P, Hammadah M, Venkatesh S, Samman-Tahhan A, Kelli HM, et al. Gender differences in the risk of adverse outcomes in patients with atrial fibrillation and heart failure with preserved ejection fraction. Am J Cardiol. 2017;119(11):1785–90. https://doi.org/10.1016/j.amjcard.2017.02.045.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mosca LM, Barrett-Connor E, Kass WN. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 2011;124(19):2145–54. https://doi.org/10.1161/CIR.0b013e31820faaf8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zoet GA, Koster MPH, Velthuis BK, de Groot CJM, Maas AHEM, Fauser BCJM, et al. Determinants of future cardiovascular health in women with a history of preeclampsia. Maturitas. 2015;82(2):153–61. https://doi.org/10.1016/j.maturitas.2015.07.004.

    Article  PubMed  Google Scholar 

  85. Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2):e003497. https://doi.org/10.1161/CIRCOUTCOMES.116.003497.

    Article  PubMed  Google Scholar 

  86. Ghossein-Doha C, Hooijschuur MCE, Spaanderman MEA. Pre-eclampsia. J Am Coll Cardiol. 2018;72(1):12–6. https://doi.org/10.1016/j.jacc.2018.04.049.

    Article  PubMed  Google Scholar 

  87. Breetveld NM, Ghossein-Doha C, van Neer J, Sengers MJJM, Geerts L, van Kuijk SMJ, et al. Decreased endothelial function and increased subclinical heart failure in women several years after pre-eclampsia. Ultrasound Obstet Gynecol. 2018;52(2):196–204. https://doi.org/10.1002/uog.17534.

    Article  CAS  PubMed  Google Scholar 

  88. Alma LJ, Bokslag A, Maas AHEM, Franx A, Paulus WJ, de Groot CJM. Shared biomarkers between female diastolic heart failure and pre-eclampsia: a systematic review and meta-analysis. ESC Heart Failure. 2017;4(2):88–98. https://doi.org/10.1002/ehf2.12129.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lane-Cordova AD, Khan SS, Grobman WA, Greenland P, Shah SJ. Long-term cardiovascular risks associated with adverse pregnancy outcomes: JACC review topic of the week. J Am Coll Cardiol. 2019;73(16):2106–16. https://doi.org/10.1016/j.jacc.2018.12.092.

    Article  PubMed  Google Scholar 

  90. Vaught AJ, Kovell LC, Szymanski LM, Mayer SA, Seifert SM, Vaidya D, et al. Acute cardiac effects of severe pre-eclampsia. J Am Coll Cardiol. 2018;72(1):1–11. https://doi.org/10.1016/j.jacc.2018.04.048.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension. 2011;58(4):709–15. https://doi.org/10.1161/HYPERTENSIONAHA.111.176537.

    Article  CAS  PubMed  Google Scholar 

  92. Melchiorre K, Sharma R, Thilaganathan B. Cardiac structure and function in normal pregnancy. Curr Opin Obstet Gynecol. 2012;24(6):413–21. https://doi.org/10.1097/GCO.0b013e328359826f.

    Article  PubMed  Google Scholar 

  93. Bokslag A, Franssen C, Teunissen PW, van Kesteren F, Kamp O, Ganzevoort JW, et al. 66: higher prevalence of diastolic dysfunction in women who have had a decade ago early onset preeclampsia. Am J Obstet Gynecol. 2017;216(1):S47–8. https://doi.org/10.1016/j.ajog.2016.11.952.

    Article  Google Scholar 

  94. Bokslag A, Franssen C, Alma LJ, Kovacevic I, van Kesteren F, Teunissen PW, et al. Early-onset preeclampsia predisposes to preclinical diastolic left ventricular dysfunction in the fifth decade of life: an observational study. PLoS One. 2018;13(6):e0198908. https://doi.org/10.1371/journal.pone.0198908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Centers for Disease Control and Prevention. Breast Cancer Statistics CDC [Internet]. 2020 [cited 2020 Jun 21]. Available from: https://www.cdc.gov/cancer/breast/statistics/index.htm

  96. Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, et al. Cancer therapy-related cardiac dysfunction and heart failure part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail. 2016;9(2):e002843. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Spannbauer A, Traxler D, Zlabinger K, Gugerell A, Winkler J, Mester-Tonczar J, et al. Large animal models of heart failure with reduced ejection fraction (HFrEF). Front Cardiovasc Med. 2019;6:117. https://doi.org/10.3389/fcvm.2019.00117.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin. Cancer. 2003;97(11):2869–79. https://doi.org/10.1002/cncr.11407.

    Article  CAS  PubMed  Google Scholar 

  99. Tsai T-H, Lin C-J, Hang C-L, Chen W-Y. Calcitriol attenuates doxorubicin-induced cardiac dysfunction and inhibits endothelial-to-mesenchymal transition in mice. Cells. 2019;8(8):865. https://doi.org/10.3390/cells8080865.

    Article  CAS  PubMed Central  Google Scholar 

  100. Dong J, Chen H. Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med. 2018;5:1–8. https://doi.org/10.3389/fcvm.2018.00009.

    Article  CAS  Google Scholar 

  101. Drafts BC, Twomley KM, D’Agostino R, Lawrence J, Avis N, Ellis LR, et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. J Am Coll Cardiol Img. 2013;6(8):877–85. https://doi.org/10.1016/j.jcmg.2012.11.017.

    Article  Google Scholar 

  102. Darby S, McGale P, Peto R, Granath F, Hall P, Ekbom A. Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ. 2003;326(7383):256–7. https://doi.org/10.1136/bmj.326.7383.256.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Abdel-Qadir H, Austin PC, Lee DS, Amir E, Tu JV, Thavendiranathan P, et al. A population-based study of cardiovascular mortality following early-stage breast cancer. JAMA Cardiol. 2017;2(1):88–93. https://doi.org/10.1001/jamacardio.2016.3841.

    Article  PubMed  Google Scholar 

  104. Saiki H, Petersen IA, Scott CGM, Bailey KR, Dunlay SMM, Finley RRC, et al. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation. 2017;135(15):1388–96. https://doi.org/10.1161/CIRCULATIONAHA.116.025434.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Reddy YNV, Carter RE, Obokata M, Redfield MM, Borlaug BA. A simple, evidence-based approach to help guide diagnosis of heart failure with preserved ejection fraction. Circulation. 2018;138(9):861–70. https://doi.org/10.1161/CIRCHEARTFAILURE.117.003862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shah AM, Cikes M, Prasad N, Li G, Getchevski S, Claggett B, et al. Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2019;74(23):2858–73. https://doi.org/10.1016/j.jacc.2019.09.063.

    Article  CAS  PubMed  Google Scholar 

  107. Duca F, Zotter-Tufaro C, Kammerlander AA, Aschauer S, Binder C, Mascherbauer J, et al. Gender-related differences in heart failure with preserved ejection fraction. Sci Rep. 2018;8:1080. https://doi.org/10.1038/s41598-018-19507-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Torii Y, Kusunose K, Yamada H, Nishio S, Hirata Y, Amano R, et al. Updated left ventricular diastolic function recommendations and cardiovascular events in patients with heart failure hospitalization. J Am Soc Echocardiogr. 2019;32(10):1286–1297.e2. https://doi.org/10.1016/j.echo.2019.06.006.

    Article  PubMed  Google Scholar 

  109. Sorajja P, Borlaug BA, Dimas V, Fang JC, Forfia PR, Givertz MM, et al. Executive summary of the SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheter Cardiovasc Interv. 2017;89(7):1294–9. https://doi.org/10.1002/ccd.27036.

    Article  PubMed  Google Scholar 

  110. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2013;309(12):1268–77. https://doi.org/10.1001/jama.2013.2024.

    Article  CAS  PubMed  Google Scholar 

  111. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134(1):73–90. https://doi.org/10.1161/CIRCULATIONAHA.116.021884.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tannenbaum S, Sayer GT. Advances in the pathophysiology and treatment of heart failure with preserved ejection fraction. Curr Opin Cardiol. 2015;30(3):250–8. https://doi.org/10.1097/HCO.0000000000000163.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ. Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J. 2018;39(30):2780–92. https://doi.org/10.1093/eurheartj/ehy301.

    Article  CAS  PubMed  Google Scholar 

  114. Merrill M, Sweitzer NK, Lindenfeld J, Kao DP. Sex differences in outcomes and responses to spironolactone in heart failure with preserved ejection fraction: a secondary analysis of TOPCAT trial. J Am Coll Cardiol HF. 2019;7(3):228–38. https://doi.org/10.1016/j.jchf.2019.01.003.

    Article  Google Scholar 

  115. O’Meara E, Clayton T, McEntegart MB, McMurray JJV, Piña IL, Granger CB, et al. Sex differences in clinical characteristics and prognosis in a broad spectrum of patients with heart failure: results of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation. 2007;115(24):3111–20. https://doi.org/10.1161/CIRCULATIONAHA.106.673442.

    Article  PubMed  Google Scholar 

  116. McMurray JJV, Jackson AMM, Lam CSPM, Redfield MM, Anand IS, Ge J, et al. Effects of sacubitril-valsartan versus valsartan in women compared with men with heart failure and preserved ejection fraction: insights from PARAGON-HF. Circulation. 2020;141(5):338–51. https://doi.org/10.1161/CIRCULATIONAHA.119.044491.

    Article  PubMed  Google Scholar 

  117. Sharma K, Kass DA. Heart failure with Preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res. 2014;115(1):79–96. https://doi.org/10.1161/CIRCRESAHA.115.302922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359(23):2456–67. https://doi.org/10.1056/NEJMoa0805450.

    Article  CAS  PubMed  Google Scholar 

  119. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-preserved trial. Lancet. 2003;362(9386):777–81. https://doi.org/10.1016/S0140-6736(03)14285-7.

    Article  CAS  PubMed  Google Scholar 

  120. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27(19):2338–45. https://doi.org/10.1093/eurheartj/ehl250.

    Article  CAS  PubMed  Google Scholar 

  121. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380(9851):1387–95. https://doi.org/10.1016/S0140-6736(12)61227-6.

    Article  CAS  PubMed  Google Scholar 

  122. Shah AMM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 2015;132(5):402–14. https://doi.org/10.1161/CIRCULATIONAHA.115.015884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Selvaraj S, Claggett BL, Böhm M, Anker SD, Vaduganathan M, Zannad F, et al. Systolic blood pressure in heart failure with preserved ejection fraction treated with sacubitril/valsartan. J Am Coll Cardiol. 2020;75(14):1644–56. https://doi.org/10.1016/j.jacc.2020.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383–92. https://doi.org/10.1056/NEJMoa1313731.

    Article  CAS  PubMed  Google Scholar 

  125. Solomon SD, Vaduganathan ML, Claggett B, Packer M, Zile M, Swedberg K, et al. Sacubitril/valsartan across the spectrum of ejection fraction in heart failure. Circulation. 2020;141(5):352–61. https://doi.org/10.1161/CIRCULATIONAHA.119.044586.

    Article  PubMed  Google Scholar 

  126. Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin–neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20. https://doi.org/10.1056/NEJMoa1908655.

    Article  CAS  PubMed  Google Scholar 

  127. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24. https://doi.org/10.1056/NEJMoa1510774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Reddy YNV, Lewis GD, Shah SJ, LeWinter M, Semigran M, Davila-Roman VG, et al. INDIE-HFpEF (inorganic nitrite delivery to improve exercise capacity in heart failure with preserved ejection fraction): rationale and design. Circ Heart Fail. 2017;10:e003862. https://doi.org/10.1161/CIRCHEARTFAILURE.117.003862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017;38(15):1119–27. https://doi.org/10.1093/eurheartj/ehw593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shim CY, Park S, Choi D, Yang W-I, Cho I-J, Choi E-Y, et al. Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol. 2011;57(10):1226–33. https://doi.org/10.1016/j.jacc.2010.09.067.

    Article  PubMed  Google Scholar 

  131. Haykowsky M, Brubaker P, Kitzman D. Role of physical training in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2012;9(2):101–6. https://doi.org/10.1007/s11897-012-0087-7.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Redfield MM, Borlaug BA, Lewis GD, Mohammed SF, Semigran MJ, LeWinter MM, et al. PhosphdiesteRasE-5 inhibition to improve CLinical status and EXercise capacity in diastolic heart failure (RELAX) trial: rationale and design. Circ Heart Fail. 2012;5(5):653–9. https://doi.org/10.1161/CIRCHEARTFAILURE.112.969071.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Thenappan T, Shah SJ, Gomberg-Maitland M, Collander B, Vallakati A, Shroff P, et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and Preserved ejection fraction. Circ Heart Fail. 2011;4(3):257–65. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958801.

    Article  PubMed  Google Scholar 

  134. Lakshmanan S, Jankowich M, Wu W, Blackshear C, Abbasi S, Choudhary G. Gender differences in risk factors associated with pulmonary artery systolic pressure, heart failure, and mortality in blacks: Jackson Heart Study. J Am Heart Assoc 2020:9(1). https://doi.org/10.1161/JAHA.119.013034.

  135. Florijn BW, Bijkerk R, van der Veer EP, van Zonneveld AJ. Gender and cardiovascular disease: are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc Res. 2018;114(2):210–25. https://doi.org/10.1093/cvr/cvx223.

    Article  CAS  PubMed  Google Scholar 

  136. Voutilainen S, Hippeläinen M, Hulkko S, Karppinen K, Ventilä M, Kupari M. Left ventricular diastolic function by doppler echocardiography in relation to hormonal replacement therapy in healthy postmenopausal women. Am J Cardiol. 1993;71(7):614–7. https://doi.org/10.1016/0002-9149(93)90525-H.

    Article  CAS  PubMed  Google Scholar 

  137. Lim WK, Wren B, Jepson N, Roy S, Caplan G. Effect of hormone replacement therapy on left ventricular hypertrophy. Am J Cardiol. 1999;83(7):1132–4. https://doi.org/10.1016/S0002-9149(99)00029-6.

    Article  CAS  PubMed  Google Scholar 

  138. Light KC, Hinderliter AL, West SG, Grewen KM, Steege JF, Sherwood A, et al. Hormone replacement improves hemodynamic profile and left ventricular geometry in hypertensive and normotensive postmenopausal women. J Hypertens. 2001;19(2):269–78. https://doi.org/10.1097/00004872-200102000-00014.

    Article  CAS  PubMed  Google Scholar 

  139. Michalson KT, Groban L, Howard TD, Shively CA, Sophonsritsuk A, Appt SE, et al. Estradiol treatment initiated early after ovariectomy regulates myocardial gene expression and inhibits diastolic dysfunction in female cynomolgus monkeys: potential roles for calcium homeostasis and extracellular matrix remodeling. J Am Heart Assoc 2018:7(21). https://doi.org/10.1161/JAHA.118.009769.

  140. Wang H, Wang C, Chen F, Ma M, Lin Z, Wang W, et al. Modification to degradation of hexazinone in forest soils amended with sewage sludge. J Hazard Mater. 2012;199–200:96–104. https://doi.org/10.1016/j.jhazmat.2011.10.073.

    Article  CAS  PubMed  Google Scholar 

  141. Zhao D, Guallar E, Ouyang P, Subramanya V, Vaidya D, Ndumele CE, et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J Am Coll Cardiol. 2018;71(22):2555–66. https://doi.org/10.1016/j.jacc.2018.01.083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Manson JE, Chlebowski RT, Stefanick ML, Aragaki AK, Rossouw JE, Prentice RL, et al. The women’s health initiative hormone therapy trials: update and overview of health outcomes during the intervention and post-stopping phases. JAMA. 2013;310(13):1353–68. https://doi.org/10.1001/jama.2013.278040.

    Article  CAS  PubMed  Google Scholar 

  143. Merz AA, Cheng S. Sex differences in cardiovascular ageing. Heart. 2016;102(11):825–31. https://doi.org/10.1136/heartjnl-2015-308769.

    Article  PubMed  Google Scholar 

  144. Deswal A, Bozkurt B. Comparison of morbidity in women versus men with heart failure and preserved ejection fraction. Am J Cardiol. 2006;97(8):1228–31. https://doi.org/10.1016/j.amjcard.2005.11.042.

    Article  PubMed  Google Scholar 

  145. Dewan P, Rørth R, Jhund PS, Shen L, Raparelli V, Petrie MC, et al. Differential impact of heart failure with reduced ejection fraction on men and women. J Am Coll Cardiol. 2019;73(1):29–40. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006539.

    Article  PubMed  Google Scholar 

  146. Stolfo D, Uijl A, Vedin O, Strömberg A, Faxén UL, Rosano GMC, et al. Sex-based differences in heart failure across the ejection fraction spectrum: phenotyping, and prognostic and therapeutic implications. JACC Heart Fail. 2019;7(6):505–15. https://doi.org/10.1016/j.jchf.2019.03.011.

    Article  PubMed  Google Scholar 

  147. Chandra A, Vaduganathan M, Lewis EF, Claggett BL, Rizkala AR, Wang W, et al. Health-related quality of life in heart failure with preserved ejection fraction: the PARAGON-HF trial. JACC Heart Fail. 2019;7(10):862–74. https://doi.org/10.1016/j.jchf.2019.05.015.

    Article  PubMed  Google Scholar 

  148. Hamo CE, Heitner JF, Pfeffer MA, Kim H, Kenwood CT, Assmann SF, et al. Baseline distribution of participants with depression and impaired quality of life in the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial. Circ Heart Fail. 2015;8(2):268–77. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001838.

    Article  CAS  PubMed  Google Scholar 

  149. Gottlieb SS, Kop WJ, Ellis SJ, Binkley P, Howlett J, O’Connor C, et al. Relation of depression to severity of illness in heart failure (from HF-ACTION [heart failure and a controlled trial investigating outcomes of exercise)] training. Am J Cardiol. 2009;103(9):1285–9. https://doi.org/10.1016/j.amjcard.2009.01.025.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tahhan AS, Vaduganathan M, Greene SJ, Fonarow GC, Fiuzat M, Jessup M, et al. Enrollment of older patients, women, and racial and ethnic minorities in contemporary heart failure clinical trials: a systematic review. JAMA Cardiol. 2018;3(10):1011–9. https://doi.org/10.1001/jamacardio.2018.2559.

    Article  PubMed  Google Scholar 

  151. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation. 2019;140(11):e563–95. https://doi.org/10.1161/CIR.0000000000000677.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Wenger NK. Female-friendly focus: 2019 ACC/AHA guideline on the primary prevention of cardiovascular Disease. Clin Cardiol. 2019;42(8):706–9. https://doi.org/10.1002/clc.23218.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Lau MD.

Ethics declarations

Conflict of interest

Anna C. O’Kelly declares that she has no conflict of interest. Emily S. Lau declares that she has no conflict of interest.

Animal rights and informed consent statement

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women’s Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Kelly, A.C., Lau, E.S. Sex Differences in HFpEF. Curr Treat Options Cardio Med 22, 73 (2020). https://doi.org/10.1007/s11936-020-00856-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00856-4

Keywords

Navigation