Skip to main content
Log in

Imaging and Management of Coronary Artery Anomalies

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

To highlight imaging features of coronary artery anomalies, especially those that may require surgical intervention, and review various management options.

Recent findings

The clinical presentation of coronary artery anomalies ranges from clinically silent lesions to those leading to sudden cardiac death. With the evolution and increasing use of advanced imaging techniques such as computed tomography, more cases are being identified on scans either done specifically for this purpose or discovered incidentally. Management decisions can be complex and often require a multidisciplinary approach.

Summary

In this article, we review advances in imaging techniques, the spectrum of imaging appearances of coronary artery anomalies, and the role of imaging in directing appropriate management as well as post-operative follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kastellanos S, Aznaouridis K, Vlachopoulos C, Tsiamis E, Oikonomou E, Tousoulis D. Overview of coronary artery variants, aberrations and anomalies. World J Cardiol. 2018;10(10):127–40.

    Google Scholar 

  2. Perez-Pomares JM, de la Pompa JL, Franco D, Henderson D, Ho SY, Houyel L, et al. Congenital coronary artery anomalies: a bridge from embryology to anatomy and pathophysiology--a position statement of the development, anatomy, and pathology ESC Working Group. Cardiovasc Res. 2016;109(2):204–16.

    CAS  Google Scholar 

  3. Grani C, Buechel RR, Kaufmann PA, Kwong RY. Multimodality imaging in individuals with anomalous coronary arteries. JACC Cardiovasc Imaging. 2017;10(4):471–81.

    Google Scholar 

  4. Cheezum MK, Liberthson RR, Shah NR, Villines TC, O'Gara PT, Landzberg MJ, et al. Anomalous aortic origin of a coronary artery from the inappropriate sinus of Valsalva. J Am Coll Cardiol. 2017;69(12):1592–608.

    Google Scholar 

  5. •• Frommelt P, Lopez L, Dimas VV, Eidem B, Han BK, Ko HH, et al. Recommendations for multimodality assessment of congenital coronary anomalies: a guide from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Angiography and Interventions, Japanese Society of Echocardiography, and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2020;33(3):259–94 This article summarizes the most up to date imaging guidelines for coronary artery anomalies.

    Google Scholar 

  6. Mazine A, Fernandes IM, Haller C, Hickey EJ. Anomalous origins of the coronary arteries: current knowledge and future perspectives. Curr Opin Cardiol. 2019;34(5):543–51.

    Google Scholar 

  7. Balaguru D, Auslender M, Colvin SB, Rutkowski M, Artman M, Phoon CK. Intraoperative myocardial ischemia recognized by transesophageal echocardiography monitoring in the pediatric population: a report of 3 cases. J Am Soc Echocardiogr. 2000;13(6):615–8.

    CAS  Google Scholar 

  8. Ko BS, Linde JJ, Ihdayhid AR, Norgaard BL, Kofoed KF, Sorgaard M, et al. Non-invasive CT-derived fractional flow reserve and static rest and stress CT myocardial perfusion imaging for detection of haemodynamically significant coronary stenosis. Int J Cardiovasc Imaging. 2019;35(11):2103–12.

    Google Scholar 

  9. Mahabadi AA, Achenbach S, Burgstahler C, Dill T, Fischbach R, Knez A, et al. Safety, efficacy, and indications of beta-adrenergic receptor blockade to reduce heart rate prior to coronary CT angiography. Radiology. 2010;257(3):614–23.

    Google Scholar 

  10. Weustink AC, Neefjes LA, Kyrzopoulos S, van Straten M, Neoh Eu R, Meijboom WB, et al. Impact of heart rate frequency and variability on radiation exposure, image quality, and diagnostic performance in dual-source spiral CT coronary angiography. Radiology. 2009;253(3):672–80.

    Google Scholar 

  11. Roberts WT, Wright AR, Timmis JB, Timmis AD. Safety and efficacy of a rate control protocol for cardiac CT. Br J Radiol. 2009;82(976):267–71.

    CAS  Google Scholar 

  12. Meinel FG, Henzler T, Schoepf UJ, Park PW, Huda W, Spearman JV, et al. ECG-synchronized CT angiography in 324 consecutive pediatric patients: spectrum of indications and trends in radiation dose. Pediatr Cardiol. 2015;36(3):569–78.

    Google Scholar 

  13. Siegel MJ, Ramirez-Giraldo JC, Hildebolt C, Bradley D, Schmidt B. Automated low-kilovoltage selection in pediatric computed tomography angiography: phantom study evaluating effects on radiation dose and image quality. Investig Radiol. 2013;48(8):584–9.

    CAS  Google Scholar 

  14. Einstein AJ, Wolff SD, Manheimer ED, Thompson J, Terry S, Uretsky S, et al. Comparison of image quality and radiation dose of coronary computed tomographic angiography between conventional helical scanning and a strategy incorporating sequential scanning. Am J Cardiol. 2009;104(10):1343–50.

    Google Scholar 

  15. Goo HW. Coronary artery imaging in children. Korean J Radiol. 2015;16(2):239–50.

    Google Scholar 

  16. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51.

    Google Scholar 

  17. Kourtidou S, Jones MR, Moore RA, Tretter JT, Ollberding NJ, Crotty EJ, et al. mDixon ECG-gated 3-dimensional cardiovascular magnetic resonance angiography in patients with congenital cardiovascular disease. J Cardiovasc Magn Reson. 2019;21(1):52.

    Google Scholar 

  18. Brothers JA, Kim TS, Fogel MA, Whitehead KK, Morrison TM, Paridon SM, et al. Cardiac magnetic resonance imaging characterizes stenosis, perfusion, and fibrosis preoperatively and postoperatively in children with anomalous coronary arteries. J Thorac Cardiovasc Surg. 2016;152(1):205–10.

    Google Scholar 

  19. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;73(12):1494–563.

    Google Scholar 

  20. Kondo C. Myocardial perfusion imaging in pediatric cardiology. Ann Nucl Med. 2004;18(7):551–61.

    Google Scholar 

  21. Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T, et al. Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol. 2011;18(5):847–57.

    Google Scholar 

  22. Chatal JF, Rouzet F, Haddad F, Bourdeau C, Mathieu C, Le Guludec D. Story of rubidium-82 and advantages for myocardial perfusion PET imaging. Front Med (Lausanne). 2015;2:65.

    Google Scholar 

  23. Lorber R, Srivastava S, Wilder TJ, McIntyre S, DeCampli WM, Williams WG, et al. Anomalous aortic origin of coronary arteries in the young: echocardiographic evaluation with surgical correlation. JACC Cardiovasc Imaging. 2015;8(11):1239–49.

    Google Scholar 

  24. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    CAS  Google Scholar 

  25. Eckart RE, Shry EA, Burke AP, McNear JA, Appel DA, Castillo-Rojas LM, et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011;58(12):1254–61.

    Google Scholar 

  26. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92.

    Google Scholar 

  27. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    Google Scholar 

  28. Miller JA, Anavekar NS, El Yaman MM, Burkhart HM, Miller AJ, Julsrud PR. Computed tomographic angiography identification of intramural segments in anomalous coronary arteries with interarterial course. Int J Cardiovasc Imaging. 2012;28(6):1525–32.

    Google Scholar 

  29. Lee HJ, Hong YJ, Kim HY, Lee J, Hur J, Choi BW, et al. Anomalous origin of the right coronary artery from the left coronary sinus with an interarterial course: subtypes and clinical importance. Radiology. 2012;262(1):101–8.

    Google Scholar 

  30. Brothers JA, McBride MG, Seliem MA, Marino BS, Tomlinson RS, Pampaloni MH, et al. Evaluation of myocardial ischemia after surgical repair of anomalous aortic origin of a coronary artery in a series of pediatric patients. J Am Coll Cardiol. 2007;50(21):2078–82.

    Google Scholar 

  31. Nguyen AL, Haas F, Evens J, Breur JM. Sudden cardiac death after repair of anomalous origin of left coronary artery from right sinus of Valsalva with an interarterial course : case report and review of the literature. Neth Hear J. 2012;20(11):463–71.

    CAS  Google Scholar 

  32. Moustafa SE, Zehr K, Mookadam M, Lorenz EC, Mookadam F. Anomalous interarterial left coronary artery: an evidence based systematic overview. Int J Cardiol. 2008;126(1):13–20.

    Google Scholar 

  33. Karamichalis JM, Vricella LA, Murphy DJ, Reitz BA. Simplified technique for correction of anomalous origin of left coronary artery from the anterior aortic sinus. Ann Thorac Surg. 2003;76(1):266–7.

    Google Scholar 

  34. Law T, Dunne B, Stamp N, Ho KM, Andrews D. Surgical results and outcomes after reimplantation for the management of anomalous aortic origin of the right coronary artery. Ann Thorac Surg. 2016;102(1):192–8.

    Google Scholar 

  35. • Agarwal PP, Dennie C, Pena E, Nguyen E, LaBounty T, Yang B, et al. Anomalous coronary arteries that need intervention: review of pre- and postoperative imaging appearances. Radiographics. 2017;37(3):740–57 This article summarizes the coronary artery anomalies that requires intervention as well as ts pre- and postoperatve appearances.

    Google Scholar 

  36. Rodefeld MD, Culbertson CB, Rosenfeld HM, Hanley FL, Thompson LD. Pulmonary artery translocation: a surgical option for complex anomalous coronary artery anatomy. Ann Thorac Surg. 2001;72(6):2150–2.

    CAS  Google Scholar 

  37. Mainwaring RD, Reddy VM, Reinhartz O, Petrossian E, MacDonald M, Nasirov T, et al. Anomalous aortic origin of a coronary artery: medium-term results after surgical repair in 50 patients. Ann Thorac Surg. 2011;92(2):691–7.

    Google Scholar 

  38. Guerra VC, Recto MR, Goldman C, Yeh T Jr. Anomalous aortic origin of the coronary artery: does pulmonary artery translocation affect coronary artery course? J Thorac Cardiovasc Surg. 2013;146(6):1549–51.

    Google Scholar 

  39. Villa AD, Sammut E, Nair A, Rajani R, Bonamini R, Chiribiri A. Coronary artery anomalies overview: the normal and the abnormal. World J Radiol. 2016;8(6):537–55.

    Google Scholar 

  40. Pfannschmidt J, Ruskowski H, de Vivie ER. Bland-White-Garland syndrome. Clinical aspects, diagnosis, therapy. Klin Padiatr. 1992;204(5):328–34.

    CAS  Google Scholar 

  41. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk. Its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation. 1968;38(2):403–25.

    CAS  Google Scholar 

  42. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986;111(5):941–63.

    CAS  Google Scholar 

  43. Berre LL, Baruteau AE, Fraisse A, Boulmier D, Jimenez M, Gallet B, et al. Anomalous origin of the left coronary artery from the pulmonary artery presenting in adulthood: a French nationwide retrospective study. Semin Thorac Cardiovasc Surg. 2017;29:486–90.

    Google Scholar 

  44. Baker DM, Lamerton AJ. Surgical management of the thoracic outlet compression syndrome. Br J Surg. 1992;79(4):372.

    CAS  Google Scholar 

  45. Edwards JE. The direction of blood flow in coronary arteries arising from the pulmonary trunk. Circulation. 1964;29:163–6.

    CAS  Google Scholar 

  46. Vouhe PR, Tamisier D, Sidi D, Vernant F, Mauriat P, Pouard P, et al. Anomalous left coronary artery from the pulmonary artery: results of isolated aortic reimplantation. Ann Thorac Surg. 1992;54(4):621–6 discussion 7.

  47. Lambert V, Touchot A, Losay J, Piot JD, Henglein D, Serraf A, et al. Midterm results after surgical repair of the anomalous origin of the coronary artery. Circulation. 1996;94(9 Suppl):II38–43.

    CAS  Google Scholar 

  48. Cochrane AD, Coleman DM, Davis AM, Brizard CP, Wolfe R, Karl TR. Excellent long-term functional outcome after an operation for anomalous left coronary artery from the pulmonary artery. J Thorac Cardiovasc Surg. 1999;117(2):332–42.

    CAS  Google Scholar 

  49. Jin Z, Berger F, Uhlemann F, Schroder C, Hetzer R, Alexi-Meskhishvili V, et al. Improvement in left ventricular dysfunction after aortic reimplantation in 11 consecutive paediatric patients with anomalous origin of the left coronary artery from the pulmonary artery. Early results of a serial echocardiographic follow-up. Eur Heart J. 1994;15(8):1044–9.

    CAS  Google Scholar 

  50. Takeuchi S, Imamura H, Katsumoto K, Hayashi I, Katohgi T, Yozu R, et al. New surgical method for repair of anomalous left coronary artery from pulmonary artery. J Thorac Cardiovasc Surg. 1979;78(1):7–11.

    CAS  Google Scholar 

  51. Bunton R, Jonas RA, Lang P, Rein AJ, Castaneda AR. Anomalous origin of left coronary artery from pulmonary artery. Ligation versus establishment of a two coronary artery system. J Thorac Cardiovasc Surg. 1987;93(1):103–8.

    CAS  Google Scholar 

  52. Isomatsu Y, Imai Y, Shin'oka T, Aoki M, Iwata Y. Surgical intervention for anomalous origin of the left coronary artery from the pulmonary artery: the Tokyo experience. J Thorac Cardiovasc Surg. 2001;121(4):792–7.

    CAS  Google Scholar 

  53. Collins N, Colman J, Benson L, Hansen M, Merchant N, Horlick E. Successful percutaneous treatment of anomalous left coronary artery from pulmonary artery. Int J Cardiol. 2007;122(3):e29–31.

    CAS  Google Scholar 

  54. Latson LA. Coronary artery fistulas: how to manage them. Catheter Cardiovasc Interv. 2007;70(1):110–6.

    Google Scholar 

  55. Mangukia CV. Coronary artery fistula. Ann Thorac Surg. 2012;93(6):2084–92.

    Google Scholar 

  56. Dodge-Khatami A, Mavroudis C, Backer CL. Congenital Heart Surgery Nomenclature and Database Project: anomalies of the coronary arteries. Ann Thorac Surg. 2000;69(4 Suppl):S270–97.

    CAS  Google Scholar 

  57. Dimitrakakis G, Von Oppell U, Luckraz H, Groves P. Surgical repair of triple coronary-pulmonary artery fistulae with associated atrial septal defect and aortic valve regurgitation. Interact Cardiovasc Thorac Surg. 2008;7(5):933–4.

    Google Scholar 

  58. Sommer RJ, Hijazi ZM, Rhodes JF. Pathophysiology of congenital heart disease in the adult: part III: complex congenital heart disease. Circulation. 2008;117(10):1340–50.

    Google Scholar 

  59. Huang YK, Lei MH, Lu MS, Tseng CN, Chang JP, Chu JJ. Bilateral coronary-to-pulmonary artery fistulas. Ann Thorac Surg. 2006;82(5):1886–8.

    Google Scholar 

  60. Fernandes ED, Kadivar H, Hallman GL, Reul GJ, Ott DA, Cooley DA. Congenital malformations of the coronary arteries: the Texas Heart Institute experience. Ann Thorac Surg. 1992;54(4):732–40.

    CAS  Google Scholar 

  61. Tkebuchava T, Von Segesser LK, Vogt PR, Jenni R, Arbenz U, Turina M. Congenital coronary fistulas in children and adults: diagnosis, surgical technique and results. J Cardiovasc Surg. 1996;37(1):29–34.

    CAS  Google Scholar 

  62. Olearchyk AS, Runk DM, Alavi M, Grosso MA. Congenital bilateral coronary-to-pulmonary artery fistulas. Ann Thorac Surg. 1997;64(1):233–5.

    CAS  Google Scholar 

  63. Lowe JE, Oldham HN Jr, Sabiston DC Jr. Surgical management of congenital coronary artery fistulas. Ann Surg. 1981;194(4):373–80.

    CAS  Google Scholar 

  64. Mavroudis C, Backer CL, Rocchini AP, Muster AJ, Gevitz M. Coronary artery fistulas in infants and children: a surgical review and discussion of coil embolization. Ann Thorac Surg. 1997;63(5):1235–42.

    CAS  Google Scholar 

  65. Said SA. Characteristics of congenital coronary artery fistulas complicated with infective endocarditis: analysis of 25 reported cases. Congenit Heart Dis. 2016;11(6):756–65.

    Google Scholar 

  66. Zenooz NA, Habibi R, Mammen L, Finn JP, Gilkeson RC. Coronary artery fistulas: CT findings. Radiographics. 2009;29(3):781–9.

    Google Scholar 

  67. Saboo SS, Juan YH, Khandelwal A, George E, Steigner ML, Landzberg M, et al. MDCT of congenital coronary artery fistulas. AJR Am J Roentgenol. 2014;203(3):W244–52.

    Google Scholar 

  68. Valente AM, Lock JE, Gauvreau K, Rodriguez-Huertas E, Joyce C, Armsby L, et al. Predictors of long-term adverse outcomes in patients with congenital coronary artery fistulae. Circ Cardiovasc Interv. 2010;3(2):134–9.

    Google Scholar 

  69. Sakakibara S, Yokoyama M, Takao A, Nogi M, Gomi H. Coronary arteriovenous fistula. Nine operated cases. Am Heart J. 1966;72(3):307–14.

    CAS  Google Scholar 

  70. Said SM, Burkhart HM, Schaff HV, Connolly HM, Phillips SD, Suri RM, et al. Late outcome of repair of congenital coronary artery fistulas--a word of caution. J Thorac Cardiovasc Surg. 2013;145(2):455–60.

    Google Scholar 

  71. Gowda ST, Forbes TJ, Singh H, Kovach JA, Prieto L, Latson LA, et al. Remodeling and thrombosis following closure of coronary artery fistula with review of management: large distal coronary artery fistula--to close or not to close? Catheter Cardiovasc Interv. 2013;82(1):132–42.

    Google Scholar 

  72. Gowda ST, Latson LA, Kutty S, Prieto LR. Intermediate to long-term outcome following congenital coronary artery fistulae closure with focus on thrombus formation. Am J Cardiol. 2011;107(2):302–8.

    Google Scholar 

  73. Cheung DL, Au WK, Cheung HH, Chiu CS, Lee WT. Coronary artery fistulas: long-term results of surgical correction. Ann Thorac Surg. 2001;71(1):190–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sayyouh MBBCH.

Ethics declarations

Conflict of interest

Mohamed Sayyouh, Elizabeth Lee, Nicole Bhave, Karen Kim, and Prachi P. Agarwal declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyouh, M., Lee, E., Bhave, N. et al. Imaging and Management of Coronary Artery Anomalies. Curr Treat Options Cardio Med 22, 40 (2020). https://doi.org/10.1007/s11936-020-00836-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00836-8

Keywords

Navigation