Skip to main content

Advertisement

Log in

Cardiovascular Disease Risk in Survivors of Breast Cancer

  • Women’s Health (M Wood, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Early detection and improved treatment in breast cancer have resulted in an increased number of survivors. Cardiovascular disease now remains an important cause for morbidity and mortality in this population. There is a growing gap in the knowledge about the optimal long-term cardiovascular management of this population.

Findings

Breast cancer and cardiovascular disease share a number of common risk factors. Different breast cancer treatment modalities, including anthracyclines, radiation, and hormonal therapy, can act in synergy with preexisting and/or new cardiovascular risk factors to result in significant cardiovascular disease.

Summary

We summarize the recent evidence about cardiovascular effects of breast cancer therapy and recommendations for their diagnosis and management during the cancer treatment continuum into survivorship. We also present current research initiatives and how they inform clinical care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Cancer Society. Breast Cancer Facts and Figures 2009-2010. Breast cancer facts & figures. 2010. Accessed from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2009-2010.pdf. Accessed 3 Oct 2019.

  2. Parry C, Kent E, Mariotto A, Alfano C, Rowland J. Cancer survivors: a booming population. Cancer Epidemiol Biomark Prev. 2011;20(10):1996–2005. https://doi.org/10.1158/1055-9965.EPI-11-0729.

    Article  Google Scholar 

  3. American Cancer Society. Breast Cancer Facts and Figures 2017-2018. Breast cancer facts & figures. 2018. Accessed from: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/breast-cancer-facts-and-figures/breast-cancer-facts-and-figures-2017-2018.pdf. Accessed 3 Oct 2019.

  4. Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, et al. The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67:93–9. https://doi.org/10.3322/caac.21388.

    Article  PubMed  Google Scholar 

  5. Denlinger CS, Carlson RW, Are M, Baker KS, Davis E, Edge SB, et al. Survivorship: introduction and definition. Clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2014;12(1):34–45.

    Article  Google Scholar 

  6. • Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400–7. https://doi.org/10.1093/annonc/mdw604. Large population study to characterize non-cancer deaths among various malignancies and standardized mortality ratios. Data was taken from US death certificates in the surveillance, epidemiology, and end results database for patients from 1973 to 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Patnaik JL, Byers T, DiGuiseppi C, Dabelea D, Denberg TD. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study. Breast Cancer Res. 2011;13:R64. https://doi.org/10.1186/bcr2901.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cancer Stat Facts: Female Breast Cancer. Surveillance, epidemiology, and end results program website. https://seer.cancer.gov/statfacts/html/breast.html. Accessed 5 May 2019.

  9. •• Mehta LS, Watson KE, Barac A, Bittner V, Cruz-Flores S, Dent S, et al. Cardiovascular disease and breast cancer: where these entities intersect. Circulation. 2018;137–e66. https://doi.org/10.1161/CIR.0000000000000556. This is the first scientific statement from the American Heart Association that provides a comprehensive review on the shared risk factors between cardiovascular disease and breast cancer, the adverse cardiovascular effects of breast cancer therapy, and prevention/treatment options for these issues.

  10. Rasmussen-Torvik LJ, Shay CM, Abramson JG, Friedrich CA, Nettleton JA, Prizment AE, et al. Ideal cardiovascular health is inversely associated with incident cancer: the atherosclerosis risk in communities study. Circulation. 2013;127:1270–5. https://doi.org/10.1161/CIRCULATIONAHA.112.001183.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Heidemann C, Schulze MB, Franco OH, van Dam RM, Mantzoros CS, Hu FB. Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation. 2008;118:230–7. https://doi.org/10.1161/CIRCULATIONAHA.108.771881.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fung TT, Hu FB, McCullough ML, Newby PK, Holmes MD. Diet quality is associated with the risk of estrogen receptor-negative breast cancer in postmenopausal women. J Nutr. 2006;136(2):466–72.

    Article  CAS  Google Scholar 

  13. Danilo C, Frank PG. Cholesterol and breast cancer development. Curr Opin Pharmacol. 2012;12(6):677–82.

    Article  CAS  Google Scholar 

  14. Hu J, La Vecchia C, de Groh M, Negri E, Morrison H, Mery L. Dietary cholesterol intake and cancer. Ann Oncol. 2012;23(2):491–500. https://doi.org/10.1093/annonc/mdr155.

    Article  CAS  PubMed  Google Scholar 

  15. • Chlebowski RT, Aragaki AK, Anderson GL, Pan K, Neuhouser ML, Manson JE et al. Low-fat dietary pattern and long-term breast cancer incidence and mortality: the women’s health initiative randomized clinical trial. J Clin Oncol. 2019;37(suppl; abstr 520). An abstract from recent findings presented at the ASCO annual meeting. This post hoc analysis of a large randomized study from over 40,000 in the Women’s Health Initiative showed significant reduction in death from breast cancer in postmenopausal women when randomized to a reduced fat diet with increased vegetables, fruit, and grain intake.

    Article  Google Scholar 

  16. Khan SS, Ning H, Wilkins JT, Allen N, Carenthon M, Berry JD, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018;3(4):280–7. https://doi.org/10.1001/jamacardio.2018.0022.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keum N, Greenwood DC, Lee DH, Kim R, Aune D, Ju W, et al. Adult weight gain and adiposity-related cancers: a dose-response meta-analysis of prospective observational studies. J Natl Cancer Inst. 2015;107:djv088. https://doi.org/10.1093/jnci/djv088.

    Article  PubMed  Google Scholar 

  18. Amadou A, Ferrari P, Muwonge R, Moskal A, Biessy C, Romieu I, et al. Overweight, obesity and risk of premenopausal breast cancer according to ethnicity: a systematic review and dose-response meta-analysis. Obes Rev. 2013;14:665–78. https://doi.org/10.1111/obr.12028.

    Article  CAS  PubMed  Google Scholar 

  19. Rosner B, Eliassen AH, Toriola AT, Hankinson SE, Willett WC, Natarajan L, et al. Short-term weight gain and breast cancer risk by hormone receptor classification among pre- and postmenopausal women. Breast Cancer Res Treat. 2015;150:643–53. https://doi.org/10.1007/s10549-015-3344-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansra D, Rollins R, Rados K, Johnson A, Ramey J, Pannell R, et al. Analysis of weight trends over time in female survivors with triple negative breast cancer. J Clin Oncol. 2018;36(7_suppl):28.

    Article  Google Scholar 

  21. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  PubMed  Google Scholar 

  22. Friedenreich CM. Physical activity and breast cancer: review of the epidemiologic evidence and biologic mechanisms. Recent Results Cancer Res. 2011;188:125–39. https://doi.org/10.1007/978-3-642-10858-7_11.

    Article  CAS  PubMed  Google Scholar 

  23. Santos-Lozano A, Ramos J, Alvarez-Bustos A, Cantos B, Alejo L, Pagola I, et al. Cardiorespiratory fitness and adiposity in breast cancer survivors: is meeting current physical activity recommendations really enough? Support Care Cancer. 2018;26(7):2293–301.

    Article  Google Scholar 

  24. McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ. 2000;321(7261):624–8. https://doi.org/10.1136/bmj.321.7261.624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brandt J, Garne JP, Tengrup I, Manjer J. Age at diagnosis in relation to survival following breast cancer: a cohort study. World J Surg Oncol. 2015;13:33. https://doi.org/10.1186/s12957-014-0429-x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, et al. American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J Clin. 2012;62:30–67. https://doi.org/10.3322/caac.20140.

    Article  PubMed  Google Scholar 

  27. Berstad P, Ma H, Bernstein L, Ursin G. Alcohol intake and breast cancer risk among young women. Breast Cancer Res Treat. 2008;108:113–20. https://doi.org/10.1007/s10549-007-9578-8.

    Article  PubMed  Google Scholar 

  28. Suzuki R, Orsini N, Mignone L, Saji S, Wolk A. Alcohol intake and risk of breast cancer defined by estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Int J Cancer. 2008;122:1832–41. https://doi.org/10.1002/ijc.23184.

    Article  CAS  PubMed  Google Scholar 

  29. Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, de Gaetano G. Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med. 2006;166:2437–45. https://doi.org/10.1001/archinte.166.22.2437.

    Article  PubMed  Google Scholar 

  30. Jang H, Chung MS, Kang SS, Park Y. Association between the dietary inflammatory index and risk for cancer recurrence and mortality among patients with breast cancer. Nutrients. 2018;10(8):1095. https://doi.org/10.3390/nu10081095.

    Article  CAS  PubMed Central  Google Scholar 

  31. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–33. https://doi.org/10.1001/jama.288.3.321.

    Article  CAS  Google Scholar 

  32. Colditz GA, Hankinson SE, Hunter DJ, Willett WC, Manson JE, Stampfer MJ, et al. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med. 1995;332:1589–93. https://doi.org/10.1056/NEJM199506153322401.

    Article  CAS  PubMed  Google Scholar 

  33. Sturgeon K, Foo W, Heroux M, Schmitz K. Change in inflammatory biomarkers and adipose tissue in BRCA1/2 + breast cancer survivors following a yearlong lifestyle modification program. Cancer Prev Res. 2018;11(9):545–50. https://doi.org/10.1158/1940-6207.

    Article  CAS  Google Scholar 

  34. Travier N, Buckland G, Vendrell J, Fernandez-Veledo S, Peiró I, del Barco S, et al. Changes in metabolic risk, insulin resistance, leptin and adiponectin following a lifestyle intervention in overweight and obese breast cancer survivors. Eur J Cancer Care. 2018;27(4):e12861. https://doi.org/10.1111/ecc.12861.

    Article  Google Scholar 

  35. Dieli-Conwright C, Courneya K, Demark-Wahnefried W, Sami N, Lee K, Buchanan T, et al. Effects of aerobic and resistance exercise on metabolic syndrome, sarcopenic obesity, and circulating biomarkers in overweight or obese survivors of breast cancer: A Randomized Controlled Trial. J Clin Oncol. 2018;36(9):875–83.

    Article  CAS  Google Scholar 

  36. Dolan L, Barry D, Petrella T, Davey L, Minnes A, Yantzi A, et al. The cardiac rehabilitation model improves fitness, quality of life, and depression in breast cancer survivors. J Cardiopulm Rehabil Prev. 2018;38(4):246–52.

    Article  Google Scholar 

  37. Tang LY, Chen LJ, Qi ML, Su Y, Su FX, Lin Y, et al. Effects of passive smoking on breast cancer risk in pre/postmenopausal women as modified by polymorphisms of PARP1 and ESR1. Gene. 2013;524:84–9. https://doi.org/10.1016/j.gene.2013.04.064.

    Article  CAS  PubMed  Google Scholar 

  38. US Department of Health and Human Services. The health consequences of smoking: 50 years of progress: a report of the surgeon general. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.

    Google Scholar 

  39. Sweeney FC, Stewart CF, Lee K, Sami N, Dieli-Conwright C. Impact of exercise on body fat distribution in overweight and obese breast cancer survivors [abstract]. In: Proceedings of the AACR Special Conference: Advances in Breast Cancer Research; 2017 Oct 7-10; Hollywood, CA. Philadelphia (PA): AACR; Mol Cancer Res 2018;16(8_Suppl):Abstract nr A10.

  40. •• Gilchrist S, Barac A, Ades PA, Alfano CM, Franklin BA, Jones LW, et al. Cardio-oncology rehabilitation to manage cardiovascular outcomes in cancer patients and survivors: a scientific statement from the American Heart Association. Circulation. 2019;139:e997–e1012. https://doi.org/10.1161/CIR.0000000000000679. A statement from the American Heart Association on the benefits of cardiac rehabilitation in cancer patients and survivors. It cites several examples of proven benefit, proposes framework for such an endeavor including the incorporation of multidisciplinary care, and outlines future research needs on a promising concept.

    Article  PubMed  Google Scholar 

  41. Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst. 2000;92(14):1126–35. https://doi.org/10.1093/jnci/92.14.1126.

    Article  CAS  PubMed  Google Scholar 

  42. Barac A, Lynce F, Smith KL, Mete M, Shara NM, Asch FM, et al. Cardiac function in BRCA1/2 mutation carriers with history of breast cancer treated with anthracyclines. Breast Cancer Res Treat. 2016;155(2):285–93. https://doi.org/10.1007/s10549-016-3678-2.

    Article  CAS  PubMed  Google Scholar 

  43. Gast KC, Viscue PV, Nowsheen S, Huddad TC, Mutter RW, Wahner Hendrickson AE, et al. Cardiovascular concerns in BRCA1 and BRCA2 mutation carriers. Curr Treat Options Cardiovasc Med. 2018;20. https://doi.org/10.1007/s11936-018-0609-z.

  44. • Campia U, Moslehi JJ, Amiri-Kordestani L, Barac A, Beckman JA, Chism DD, et al. Cardio-oncology: vascular and metabolic perspectives: a scientific statement from the American Heart Association. Circulation. 2019;139(13):e579–602. https://doi.org/10.1161/CIR.0000000000000641. An American Heart Association statement reviewing the current evidence on vascular and metabolic effects from cancer therapy.

    Article  PubMed  PubMed Central  Google Scholar 

  45. •• Zamorano J, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur Heart J. 2016;37(36):2768–801. https://doi.org/10.1093/eurheartj/ehw211. This is a very comprehensive guide covering all aspects of cardiotoxicity related to cancer treatment methods. The aim of this paper is to serve as a guide for clinicians treating cancer patients and survivors by reviewing the cardiovascular monitoring and decision-making options available.

    Article  PubMed  Google Scholar 

  46. Veronese P, Hachul D, Scanavacca M, Hajjar L, Wu T, Sacilotto L, et al. Effects of anthracycline, cyclophosphamide and taxane chemotherapy on QTc measurements in patients with breast cancer. PLoS ONE. 2018;13(5):e0196763.

    Article  Google Scholar 

  47. Guglin M, Aljayeh M, Saiyad S, Ali R, Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11:1579–86. https://doi.org/10.1093/europace/eup300.

    Article  PubMed  Google Scholar 

  48. Heck S, Gulati G, Hoffmann P, von Knobelsdorff-Brenkenhoff F, Storås T, Ree A, et al. Effect of candesartan and metoprolol on myocardial tissue composition during anthracycline treatment: the PRADA trial. Eur Heart J Cardiovasc Imaging. 2018;19(5):544–52.

    Article  Google Scholar 

  49. Takemura G, Fujiwara H. Doxorubicin-induced cardiomyopathy. Prog Cardiovasc Dis. 2007;49(5):330–52.

    Article  CAS  Google Scholar 

  50. •• Armenian S, Lacchetti C, Barac A, Carver J, Contine L, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline Summary. J Oncol Pract. 2017;13(4):270–5. American Society of Clinical Oncology practice guidelines based off 104 studies from 1996 to 2016. The panel provides comprehensive recommendations on the prevention and monitoring of cardiac dysfunction in survivors of adult-onset cancers.

    Article  Google Scholar 

  51. Boekel NB, Jacobse JN, Schaapveld M, Hooning MJ, Gietema JA, Duane FK, et al. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br J Cancer. 2018;119:408–18.

    Article  CAS  Google Scholar 

  52. Fogarassy G, Vathy-Fogarassy Á, Kenessey I, Kásler M, Forster T. Risk prediction model for long-term heart failure incidence after epirubicin chemotherapy for breast cancer – A real-world data-based, nationwide classification analysis. Int J Cardiol. 2019;285:47–52.

    Article  Google Scholar 

  53. Upshaw JN, Ruthazer R, Miller KD, Parsons SK, Erban JK, O’Neill AM, et al. Personalized decision making in early stage breast cancer: applying clinical prediction models for anthracycline cardiotoxicity and breast cancer mortality demonstrates substantial heterogeneity of benefit-harm trade-off. Clinical Breast Cancer. 2019; In Press.

  54. Polk A, Vaage-Nilsen M, Vistisen K, Nielsen D. Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine: a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev. 2013;39(8):974–84.

    Article  CAS  Google Scholar 

  55. Sara J, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:175883591878014.

    Article  Google Scholar 

  56. Dewar JA, Horobin JM, Preece PE, Tavendale R, Tunstall-Pedoe H. Wood RALong term effects of tamoxifen on blood lipid values in breast cancer. BMJ. 1992;305:225–6.

    Article  CAS  Google Scholar 

  57. Esteva FJ, Hortobagyi GN. Comparative assessment of lipid effects of endocrine therapy for breast cancer: implications for cardiovascular disease prevention in postmenopausal women. Breast. 2006;15:301–12. https://doi.org/10.1016/j.breast.2005.08.033.

    Article  CAS  PubMed  Google Scholar 

  58. • Matthews A, Stanway S, Farmer R, Strongman H, Thomas S, Lyon A, et al. Long term adjuvant endocrine therapy and risk of cardiovascular disease in female breast cancer survivors: systematic review. BMJ. 2018;363:k3845. Meta-analysis of 26 studies including randomized trials to observational, epidemiologic data on the adverse cardiovascular effects from long-term endocrine therapy (e.g., tamoxifen and aromatase inhibitors) in non-metastatic breast cancer patients.

    Article  Google Scholar 

  59. • Xu X, Chlebowski R, Shi J, Barac A, Haque R. Aromatase inhibitor and tamoxifen use and the risk of venous thromboembolism in breast cancer survivors. Breast Cancer Res Treat. 2019;174(3):785–94. A large prospective study with data from patients in a managed care system, examining the incidence of venous thromboembolic events while on long-term adjuvant hormonal therapy with tamoxifen or aromatase inhibitors.

    Article  CAS  Google Scholar 

  60. Amir E, Seruga B, Niraula S, Carlsson L, Ocaña A. Toxicity of adjuvant endocrine therapy in postmenopausal breast cancer patients: a systematic review and meta-analysis. J Natl Cancer Inst. 2011;103:1299–309. https://doi.org/10.1093/jnci/djr242.

    Article  CAS  PubMed  Google Scholar 

  61. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.

    Article  CAS  Google Scholar 

  62. Barthur A, Brezden-Masley C, Connelly K, Dhir V, Chan K, Haq R, et al. Longitudinal assessment of right ventricular structure and function by cardiovascular magnetic resonance in breast cancer patients treated with trastuzumab: a prospective observational study. J Cardiovasc Magn Reson. 2017;19(1).

  63. Rowinsky E, McGuire W, Guarnieri T, Fisherman J, Christian M, Donehower R. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9(9):1704–12.

    Article  CAS  Google Scholar 

  64. KISQALI® (ribociclib) [US package insert]. Basel, Switzerland: Novartis; 2017.

  65. Guha A, Armanious M, Fradley M. Update on cardio-oncology: novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc Med. 2019;29(1):29–39.

    Article  CAS  Google Scholar 

  66. • Lancellotti P, Nkomo V, Badano L, Bergler J, Bogaert J, Davin L, et al. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: A report from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2013;26(9):1013–32. https://doi.org/10.1016/j.echo.2013.07.005. Expert panel consensus on the specific imaging approaches for detection, follow-up, and surveillance of cancer patients exposed to radiation therapy.

    Article  PubMed  Google Scholar 

  67. • Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR, et al. Circulation. 2017;135(15):1388–96. https://doi.org/10.1161/CIRCULATIONAHA.116.025434 Recent case control study from a single county examining the incidence of heart failure in patients treated with contemporary radiation therapy from 1998-2013.

    Article  PubMed  PubMed Central  Google Scholar 

  68. McGowan J, Chung R, Maulik A, Piotrowska I, Walker J, Yellon D. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    Article  CAS  Google Scholar 

  69. •• Barish R, Lynce F, Unger K, Barac A. Management of cardiovascular disease in women with breast cancer. Circulation. 2019;139:1110–20 A review article with different clinical scenarios of breast cancer patients at risk for various adverse cardiovascular effects from cancer therapy. This article provides suggestions on how to approach each of these situations.

    Article  Google Scholar 

  70. Turcotte LM, Liu Q, Yasui Y, Arnold MA, Hammond S, Howell RM, et al. Temporal trends in treatment and subsequent neoplasm risk among 5-year survivors of childhood cancer, 1970-2015. JAMA. 2017;317(8):814–24. https://doi.org/10.1001/jama.2017.0693.

    Article  PubMed  PubMed Central  Google Scholar 

  71. • Gulati G, Heck SL, Ree AH, Hoffman P, Schulz-Menger J, Fagerland MW, et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): a 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur Heart J. 2016;37(21):1671–80. https://doi.org/10.1093/eurheartj/ehw022. A 2 × 2 factorial, randomized study of breast cancer patients undergoing adjuvant epirubicin-based chemotherapy randomized to metoprolol succinate or candesartan for primary prevention of cardiomyopathy and left-ventricular systolic dysfunction, as detected by cardiac MRI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Avila MS, Ayub-Ferreira SM, Wanderley M, Cruz FD, Goncalves Brandão SM, Carvalho Riguad VO, et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity: the CECCY Trial. J Am Coll Cardiol. 2018;71(20):2281–90. This is a prospective, randomized clinical trial where patients were randomized to either beta-blocker (carvedilol) or placebo prior to anthracycline-based chemotherapy for primary prevention of anthracycline-induced cardiotoxicity.

    Article  CAS  Google Scholar 

  73. Kaalam K, Marwick TH. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. Eur J Cancer. 2013;49(13):2900–9.

    Article  Google Scholar 

  74. ZINECARD® (dexrazoxane for injection) [US package insert]. New York, NY: Pfizer; 2012. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020212s013lbl.pdf.

  75. Kümler I, Tuxen M, Nielsen D. A systematic review of dual targeting in HER2-positive breast cancer. Cancer Treat Rev. 2014;40(2):259–70.

    Article  Google Scholar 

  76. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014;16:209. https://doi.org/10.1186/bcr3621.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Giordano S, Temin S, Chandarlapaty S, Crews J, Esteva F, Kirshner J, et al. Systemic therapy for patients with advanced human epidermal growth factor receptor 2–positive breast cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol. 2018;36(26):2736–40.

    Article  Google Scholar 

  78. HERCEPTIN® (trastuzumab) [US package insert]. Genentech: South San Francisco, CA; 2017. https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/103792s5337lbl.pdf.

  79. • Plana J, Galderisi M, Barac A, Ewer M, Ky B, Scherrer-Crosbie M, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15(10):1063–93 Expert recommendations on the utility of several imaging modalities used in the routine care and surveillance of cancer patients. The authors detail different aspects of echocardiography used for different adverse cardiovascular disease from cancer therapy. While focused on echocardiography, the authors also outline alternative imaging methods.

    Article  Google Scholar 

  80. Schneeweiss A, Chia S, Hickish T, Harvey V, Eniu A, Waldron-Lynch M, et al. Long-term efficacy analysis of the randomised, phase II TRYPHAENA cardiac safety study: evaluating pertuzumab and trastuzumab plus standard neoadjuvant anthracycline-containing and anthracycline-free chemotherapy regimens in patients with HER2-positive early breast cancer. Eur J Cancer. 2018;89:27–35.

    Article  CAS  Google Scholar 

  81. Banke A, Fosbøl EL, Ewertz M, Videbæk L, Dahl JS, Poulsen MK, et al. Long-term risk of heart failure in breast cancer patients after adjuvant chemotherapy with or without trastuzumab. JACC: Heart Fail. 2019;7(3):217–24. https://doi.org/10.1016/j.jchf.2018.09.001.

    Article  Google Scholar 

  82. Ezaz G, Long JB, Gross CP, Chen J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014;3:e000472. https://doi.org/10.1161/JAHA.113.000472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. • Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, et al. Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101–Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol. 2017;35(8):870–7. Prospective placebo controlled, randomized clinical trial to evaluate the use of perindopril (an angiotensin-converting enzyme inhibitor) or bisoprolol (beta-blocker) for primary prevention of cardiac dysfunction from trastuzumab therapy. Primary outcome measured was left ventricular remodeling as measured by left ventricular end-diastolic diameter by cardiac MRI.

    Article  CAS  Google Scholar 

  84. • Guglin M, Krischer J, Tamura R, Fink A, Bello-Matricaria L, McCasckill-Stevens MW, et al. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J Am Coll Cardiol. 2019;73(22):2859–68. https://doi.org/10.1016/j.jacc.2019.03.495. Prospective placebo controlled, randomized trial to evaluate the efficacy of lisinopril (an angiotensin-converting enzyme inhibitor) or carvedilol (beta-blocker) for primary prevention of cardiac dysfunction from trastuzumab therapy. Primary outcome measured was cardiotoxicity defined by decrease in left ventricular function.

    Article  CAS  PubMed  Google Scholar 

  85. • Lynce F, Barac A, Geng X, Dang C, Yu AF, Smith KL, et al. Prospective evaluation of the cardiac safety of HER2-targeted therapies in patients with HER2-positive breast cancer and compromised heart function: the SAFE-HEaRt study. Breast Cancer Res Treat. 2019;175(3):595–603. https://doi.org/10.1007/s10549-019-05191-2. A prospective study examining if HER2 therapy can be safely administered with close cardiac monitoring in patients with reduced left ventricular function (ejection fraction 40–50%) on guideline-directed medical therapy (beta-blocker and angiotensin-converting enzyme inhibitor).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Frasor J, Stossi F, Danes JM, Komm B, Lyttle CR, Katzenellenbogen BS. Selective estrogen receptor modulators: discrimination of agonistic versus antagonistic activities by gene expression profiling in breast cancer cells. Cancer Res. 2004;64:1522–33.

    Article  CAS  Google Scholar 

  87. Fabian CJ. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract. 2007;61:2051–63. https://doi.org/10.1111/j.1742-1241.2007.01587.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Walker A, West J, Card T, Crooks C, Kirwan C, Grainge M. When are breast cancer patients at highest risk of venous thromboembolism? A cohort study using English health care data. Blood. 2015;127(7):849–57.

    Article  Google Scholar 

  89. Gradishar W. Taxanes for the treatment of metastatic breast cancer. Breast Cancer: Basic Clin Res. 2012;6:BCBCR.S8205.

  90. Chakrabarti S, Sara J, Lobo R, Eiring R, Finnes H, Mitchell J, et al. Bolus 5-fluorouracil (5-FU) in combination with oxaliplatin is safe and well tolerated in patients who experienced coronary vasospasm with infusional 5-FU or capecitabine. Clin Colorectal Cancer. 2019;18(1):52–7.

    Article  Google Scholar 

  91. Spring LM, Wander SA, Zangardi M, Bardia A. CDK 4/6 inhibitors in breast cancer: current controversies and future directions. Curr Oncol Rep. 2019;21(3):25. https://doi.org/10.1007/s11912-019-0769-3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Martel S, Bruzzone M, Ceppi M, Maurer C, Ponde N, Ferreira A, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: a systematic review and meta-analysis. Cancer Treat Rev. 2018;62:123–32.

    Article  CAS  Google Scholar 

  93. Hurvitz S, Im SA, Lu YS, Colleoni M, Franke FA, Bardia A, et al. Phase III MONALEESA-7 trial of postmenopausal patients with HR+/HER- advanced breast cancer (ABC) treated with endocrine therapy +/- ribociclib: overall survival (OS) results. J Clin Oncol. 2019;37(suppl; abstr LBA1008).

    Article  Google Scholar 

  94. Taylor C, Kirby A. Cardiac side-effects from breast cancer radiotherapy. Clin Oncol. 2015;27(11):621–9.

    Article  CAS  Google Scholar 

  95. Denlinger CS, Sanft T, Baker KS, Broderick G, Demark-Wahnefried W, Friedman DL, et al. J Natl Compr Cancer Netw. 2018;16(10):1216–47. https://doi.org/10.6004/jnccn.2018.0078.

    Article  CAS  Google Scholar 

  96. Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens Alvarado RL, et al. American Cancer Society/American Society of Clinical Oncology Breast Guideline. J Clin Oncol. 2016;34:611–35. https://doi.org/10.1200/JCO.2015.64.3809.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Barac MD, PhD.

Ethics declarations

Conflict of Interest

Ana Barac has no conflict of interest related to this article. She has received honoraria from Bristol Myers Squibb and serves on the DSMB of CTI Biopharma.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Women’s Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A.V., Reddin, G., Forrestal, B. et al. Cardiovascular Disease Risk in Survivors of Breast Cancer. Curr Treat Options Cardio Med 21, 79 (2019). https://doi.org/10.1007/s11936-019-0788-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0788-2

Keywords

Navigation