Skip to main content

Advertisement

Log in

Cryptogenic Stroke: Diagnostic Workup and Management

  • Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Cryptogenic stroke describes a subset of ischemic stroke for which no cause can be found despite a structured investigation. There are a number of putative mechanisms of cryptogenic ischemic stroke including a covert structural cardiac lesion, paroxysmal atrial fibrillation, hypercoagulable state or undiagnosed malignancy. Because many of these proposed mechanisms are embolic – and based on studies of thrombus history showing commonalities between thrombus composition between cardioembolic and cryptogenic strokes – the concept of embolic stroke of undetermined source (ESUS) (Hart et al. Lancet Neurol. 13(4):429–38, 2014; Stroke. 48(4):867–72, 2017) has been proposed to describe cryptogenic strokes that may warrant systemic anticoagulation. In this review, we discuss the phenomena of cryptogenic stroke, ESUS and a proposed management pathway.

Recent findings

1. The concept of ESUS was proposed in 2014 as a potentially useful therapeutic entity. Two recent trials – NAVIGATE-ESUS (Hart et al. N Engl J Med. 378(23):2191–201, 2018) and RESPECT-ESUS (Diener 2018) were proposed based on this concept. They were negative for their primary endpoint and for the secondary endpoint of ischemic stroke recurrence. Post-hoc analysis of the WARSS trial (Longstreth et al. Stroke. 44(3):714–9, 2013) suggested that people with elevated pro-BNP benefited from systemic anticoagulation whereas those with a normal pro-BNP did not. This led to the hypothesis that a subgroup of patients at higher risk for embolism from the left atrium would benefit from anticoagulation, even if the WARSS trial was negative for the primary endpoint. Thus, the ARCADIA trial (Kamel et al. Int J Stroke. 14(2):207–14, 2019) was proposed – a randomized, active-control, multi-center trial comparing apixaban with aspirin for secondary stroke prevention in patients with ESUS and biomarkers of left atrial cardiopathy. This trial is actively recruiting. 2. Carotid web – an intimal form of fibromuscular dysplasia – has come to increased prominence in the literature as a cause of embolic stroke. It is a non-stenosis, non-atherosclerotic lesion in the posterior wall of the internal carotid artery that leads to pooling with stasis of blood distal to the lesion and, as a consequence, embolic stroke. It is not usually detected by a standard stroke workup as it masquerades as non-calcified atherosclerosis and does not cause hemodynamically significant stenosis. There have been two major recent papers – a meta-analysis in Stroke (Zhang et al. Stroke. 49(12):2872–6, 2018) and narrative review in JAMA Neurology (Kim et al. JAMA Neurol. 2018) – that addressed this topic.

Summary

Cryptogenic stroke describes a stroke for which no cause has been found. ESUS is a more precisely-defined entity that mandates a specific workup and implicates remote embolism as a cause of stroke. In ESUS, the options for further investigation include long-term cardiac monitoring, transesophageal echocardiography, investigation for occult malignancy or arterial hypercoagulability. Options for management include anti-platelet therapy (the current standard of care), empiric anticoagulation or enrollment in to a clinical trial examining the use of NOACs compared with aspirin for secondary prevention (such as ARCADIA or ATTICUS). In a person less than 60 years old with ESUS and a patent foramen ovale the risk of a recurrent stroke is low but recent trials have suggested that percutaneous device closure reduces this risk further with an acceptable complication rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References and recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of org 10172 in acute stroke treatment. Stroke. 1993;24(1):35–41.

    Article  PubMed  Google Scholar 

  2. Ornello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, et al. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: a systematic review and meta-analysis. Stroke. 2018;49(4):814–9.

    Article  PubMed  Google Scholar 

  3. Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O'Donnell MJ, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13(4):429–38.

    Article  PubMed  Google Scholar 

  4. Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke. 2017;48(4):867–72.

    Article  PubMed  Google Scholar 

  5. Sacco RL, Ellenberg JH, Mohr JP, Tatemichi TK, Hier DB, Price TR, et al. Infarcts of undetermined cause: the NINCDS stroke data Bank. Ann Neurol. 1989;25(4):382–90.

    Article  PubMed  CAS  Google Scholar 

  6. Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, et al. Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke: a population-based study. Lancet Neurol. 2015;14(9):903–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ntaios G, Vemmos K, Lip GY, Koroboki E, Manios E, Vemmou A, et al. Risk stratification for recurrence and mortality in embolic stroke of undetermined source. Stroke. 2016;47(9):2278–85.

    Article  PubMed  Google Scholar 

  8. Sporns PB, Hanning U, Schwindt W, Velasco A, Minnerup J, Zoubi T, et al. Ischemic stroke: what does the histological composition tell us about the origin of the Thrombus? Stroke. 2017;48(8):2206–10.

    Article  PubMed  Google Scholar 

  9. Lamy C, Giannesini C, Zuber M, Arquizan C, Meder JF, Trystram D, et al. Clinical and imaging findings in cryptogenic stroke patients with and without patent foramen ovale: the PFO-ASA study. Atrial septal aneurysm. Stroke. 2002;33(3):706–11.

    Article  PubMed  CAS  Google Scholar 

  10. Glotzer TV, Ziegler PD. Silent atrial fibrillation as a stroke risk factor and anticoagulation indication. Can J Cardiol. 2013;29(7 Suppl):S14–23.

    Article  PubMed  Google Scholar 

  11. Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370(26):2467–77.

    Article  CAS  Google Scholar 

  12. Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86.

    Article  CAS  PubMed  Google Scholar 

  13. Kamel H, Bartz TM, Elkind MSV, Okin PM, Thacker EL, Patton KK, et al. Atrial Cardiopathy and the risk of ischemic stroke in the CHS (cardiovascular health study). Stroke. 2018;49(4):980–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Montalvo M, Tadi P, Merkler A, Gialdini G, Martin-Schild S, Navalkele D, et al. PR interval prolongation and cryptogenic stroke: a multicenter retrospective study. J Stroke Cerebrovasc Dis. 2017;26(10):2416–20.

    Article  PubMed  Google Scholar 

  15. Fonseca AC, Alves P, Inácio N, Marto JP, Viana-Baptista M, Pinho-E-Melo T, et al. Patients with undetermined stroke have increased atrial fibrosis: a cardiac magnetic resonance imaging study. Stroke. 2018;49(3):734–7.

    Article  PubMed  Google Scholar 

  16. Yaghi S, Kamel H, Elkind MSV. Atrial cardiopathy: a mechanism of cryptogenic stroke. Expert Rev Cardiovasc Ther. 2017;15(8):591–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Katsanos AH, Bhole R, Frogoudaki A, Giannopoulos S, Goyal N, Vrettou AR, et al. The value of transesophageal echocardiography for embolic strokes of undetermined source. Neurology. 2016;87(10):988–95.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kwong Y, Troupis J. Cardiac CT imaging in the context of left atrial appendage occlusion. J Cardiovasc Comput Tomogr. 2015;9(1):13–8.

    Article  PubMed  Google Scholar 

  19. Romero J, Husain SA, Kelesidis I, Sanz J, Medina HM, Garcia MJ. Detection of left atrial appendage thrombus by cardiac computed tomography in patients with atrial fibrillation: a meta-analysis. Circ Cardiovasc Imaging. 2013;6(2):185–94.

    Article  PubMed  Google Scholar 

  20. Hur J, Kim YJ, Lee HJ, Nam JE, Ha JW, Heo JH, et al. Dual-enhanced cardiac CT for detection of left atrial appendage thrombus in patients with stroke: a prospective comparison study with transesophageal echocardiography. Stroke. 2011;42(9):2471–7.

    Article  PubMed  Google Scholar 

  21. Hur J, Kim YJ, Lee HJ, Nam JE, Hong YJ, Kim HY, et al. Cardioembolic stroke: dual-energy cardiac CT for differentiation of left atrial appendage thrombus and circulatory stasis. Radiology. 2012;263(3):688–95.

    Article  PubMed  Google Scholar 

  22. Kim YJ, Hur J, Shim CY, Lee HJ, Ha JW, Choe KO, et al. Patent foramen ovale: diagnosis with multidetector CT--comparison with transesophageal echocardiography. Radiology. 2009;250(1):61–7.

    Article  PubMed  Google Scholar 

  23. Yaghi S, Liberman AL, Atalay M, Song C, Furie KL, Kamel H, et al. Cardiac magnetic resonance imaging: a new tool to identify cardioaortic sources in ischaemic stroke. J Neurol Neurosurg Psychiatry. 2017;88(1):31–7.

    Article  Google Scholar 

  24. de Groot NM, Schalij MJ. Imaging modalities for measurements of left atrial volume in patients with atrial fibrillation: what do we choose? Europace. 2010;12(6):766–7.

    Article  PubMed  Google Scholar 

  25. Task Force of the European Society of Cardiology, in collaboration with the Association of European Paediatric Cardiologists. The clinical role of magnetic resonance in cardiovascular disease. Eur Heart J. 1998;19(1):19–39.

    Article  Google Scholar 

  26. Baher A, Mowla A, Kodali S, Polsani VR, Nabi F, Nagueh SF, et al. Cardiac MRI improves identification of etiology of acute ischemic stroke. Cerebrovasc Dis. 2014;37(4):277–84.

    Article  PubMed  Google Scholar 

  27. Takasugi J, Yamagami H, Noguchi T, Morita Y, Tanaka T, Okuno Y, et al. Detection of left ventricular Thrombus by cardiac magnetic resonance in embolic stroke of undetermined source. Stroke. 2017;48(9):2434–40.

    Article  PubMed  Google Scholar 

  28. Thanigaraj S, Valika A, Zajarias A, Lasala JM, Perez JE. Comparison of transthoracic versus transesophageal echocardiography for detection of right-to-left atrial shunting using agitated saline contrast. Am J Cardiol. 2005;96(7):1007–10.

    Article  PubMed  Google Scholar 

  29. Daniëls C, Weytjens C, Cosyns B, Schoors D, De Sutter J, Paelinck B, et al. Second harmonic transthoracic echocardiography: the new reference screening method for the detection of patent foramen ovale. Eur J Echocardiogr. 2004;5(6):449–52.

    Article  PubMed  Google Scholar 

  30. Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, et al. Patent foramen Ovale closure or anticoagulation vs. Antiplatelets after stroke. N Engl J Med. 2017;377(11):1011–21.

    Article  CAS  Google Scholar 

  31. Caputi L, Carriero MR, Falcone C, Parati E, Piotti P, Materazzo C, et al. Transcranial Doppler and transesophageal echocardiography: comparison of both techniques and prospective clinical relevance of transcranial Doppler in patent foramen ovale detection. J Stroke Cerebrovasc Dis. 2009;18(5):343–8.

    Article  PubMed  Google Scholar 

  32. Gupta A, Gialdini G, Lerario MP, Baradaran H, Giambrone A, Navi BB, et al. Magnetic resonance angiography detection of abnormal carotid artery plaque in patients with cryptogenic stroke. J Am Heart Assoc. 2015;4(6):e002012.

  33. Komatsu T, Iguchi Y, Arai A, Sakuta K, Sakai K, Terasawa Y, et al. Large but nonstenotic carotid artery plaque in patients with a history of embolic stroke of undetermined source. Stroke. 2018;49(12):3054–6.

    Article  PubMed  Google Scholar 

  34. Amarenco P, Cohen A, Tzourio C, Bertrand B, Hommel M, Besson G, et al. Atherosclerotic disease of the aortic arch and the risk of ischemic stroke. N Engl J Med. 1994;331(22):1474–9.

    Article  CAS  Google Scholar 

  35. Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, et al. Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke. 2010;41(6):1145–50.

    Article  PubMed  Google Scholar 

  36. Mitusch R, Doherty C, Wucherpfennig H, Memmesheimer C, Tepe C, Stierle U, et al. Vascular events during follow-up in patients with aortic arch atherosclerosis. Stroke. 1997;28(1):36–9.

    Article  PubMed  CAS  Google Scholar 

  37. Cohen A, Tzourio C, Bertrand B, Chauvel C, Bousser MG, Amarenco P. Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS investigators. French study of aortic plaques in stroke. Circulation. 1997;96(11):3838–41.

    Article  PubMed  CAS  Google Scholar 

  38. Rundek T, Di Tullio MR, Sciacca RR, Titova IV, Mohr JP, Homma S, et al. Association between large aortic arch atheromas and high-intensity transientsignals in elderly stroke patients. Stroke. 1999;30:2683-2686.

    Article  PubMed  CAS  Google Scholar 

  39. Ko Y, Kim WJ, Jang MS, Yang MH, Park JH, Choi SI, et al. Is aortic atherothrombotic disease detected using multidetector-row CT associated with an increased risk of early ischemic lesion recurrence after acute ischemic stroke? Stroke. 2012;43(3):764–9.

    Article  PubMed  Google Scholar 

  40. Chatzikonstantinou A, Krissak R, Flüchter S, Artemis D, Schaefer A, Schoenberg SO, et al. CT angiography of the aorta is superior to transesophageal echocardiography for determining stroke subtypes in patients with cryptogenic ischemic stroke. Cerebrovasc Dis. 2012;33(4):322–8.

    Article  PubMed  CAS  Google Scholar 

  41. Bushnell CD, Goldstein LB. Diagnostic testing for coagulopathies in patients with ischemic stroke. Stroke. 2000;31(12):3067–78.

    Article  PubMed  CAS  Google Scholar 

  42. Choi PM, Singh D, Trivedi A, Qazi E, George D, Wong J, et al. Carotid webs and recurrent ischemic strokes in the era of CT angiography. AJNR Am J Neuroradiol. 2015;36(11):2134–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Compagne KCJ, Dilba K, Postema EJ, van Es ACGM, Emmer BJ, Majoie CBLM, et al. Flow patterns in carotid webs: a patient-based computational fluid dynamics study. AJNR Am J Neuroradiol. 2019.

  44. Haussen DC, Grossberg JA, Bouslama M, Pradilla G, Belagaje S, Bianchi N, et al. Carotid web (intimal fibromuscular dysplasia) has high stroke recurrence risk and is amenable to stenting. Stroke. 2017;48(11):3134–7.

    Article  PubMed  Google Scholar 

  45. De novo formation of a carotid web: case report. J Neurosurg 2018:1–4.

  46. Compagne KCJ, van Es ACGM, Berkhemer OA, Borst J, Roos YBWE, van Oostenbrugge RJ, et al. Prevalence of carotid web in patients with acute intracranial stroke due to intracranial large vessel occlusion. Radiology. 2018;286(3):1000–7.

    Article  PubMed  Google Scholar 

  47. Joux J, Chausson N, Jeannin S, Saint-Vil M, Mejdoubi M, Hennequin JL, et al. Carotid-bulb atypical fibromuscular dysplasia in young afro-Caribbean patients with stroke. Stroke. 2014;45(12):3711–3.

    Article  PubMed  Google Scholar 

  48. Joux J, Boulanger M, Jeannin S, Chausson N, Hennequin JL, Molinié V, et al. Association between carotid bulb diaphragm and ischemic stroke in young afro-Caribbean patients: a population-based case-control study. Stroke. 2016;47(10):2641–4.

    Article  PubMed  Google Scholar 

  49. •• Zhang AJ, Dhruv P, Choi P, Bakker C, Koffel J, Anderson D, et al. A Systematic Literature Review of Patients With Carotid Web and Acute Ischemic Stroke. Stroke. 2018;49(12):2872–6. A systematic literature review describing the world literature review to-date on carotid webs and the association with ischemic stroke. This article emphasizes the high rate of recurrent stroke in people with webs, potential efficacy of carotid stenting and also the selection bias in the literature to-date.

    Article  PubMed  Google Scholar 

  50. Mohr JP, Thompson JL, Lazar RM, Levin B, Sacco RL, Furie KL, et al. A comparison of warfarin and aspirin for the prevention of recurrent ischemic stroke. N Engl J Med. 2001;345(20):1444–51.

    Article  CAS  Google Scholar 

  51. Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. N Engl J Med. 2018;378(23):2191–201. The NAVIGATE-ESUS trial. This randomized trial compared aspirin with rivaroxaban for secondary stroke prevention. It showed a low rate of recurrent stroke (<5%) in both treatment and active-controls arms but no benefit from anticoagulation for the primary outcome or secondary outcome of recurrent ischemic stroke. This trial will end up being very important in future trials that refine a population of people with ESUS that benefit from anticoagulation.

  52. Diener HC, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undeterminedsource. The New England journal of medicine. 2019;380:1906-1917.

    Article  CAS  Google Scholar 

  53. Geisler T, Poli S, Meisner C, Schreieck J, Zuern CS, Nägele T, et al. Apixaban for treatment of embolic stroke of undetermined source (ATTICUS randomized trial): rationale and study design. Int J Stroke. 2017;12(9):985–90.

    Article  PubMed  Google Scholar 

  54. Kamel H, Longstreth WT, Tirschwell DL, Kronmal RA, Broderick JP, Palesch YY, et al. The AtRial Cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke randomized trial: rationale and methods. Int J Stroke. 2019;14(2):207–14.

    Article  PubMed  Google Scholar 

  55. Longstreth WT, Kronmal RA, Thompson JL, Christenson RH, Levine SR, Gross R, et al. Amino terminal pro-B-type natriuretic peptide, secondary stroke prevention, and choice of antithrombotic therapy. Stroke. 2013;44(3):714–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368(12):1083–91.

    Article  CAS  PubMed  Google Scholar 

  57. •• Søndergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, et al. Patent Foramen Ovale Closure or Antiplatelet Therapy for Cryptogenic Stroke. N Engl J Med. 2017;377(11):1033–42. The GORE-REDUCE trial. This trial compared medical therapy with percutaneous PFO closure in people with embolic-appearing strokes and a PFO and showed a dramatic benefit (6.8% risk of clinical ischemic stroke in medical treatment group and 1.3% risk in device closure group over median of 3.2 years).

    Article  PubMed  Google Scholar 

  58. Lee PH, Song JK, Kim JS, Heo R, Lee S, Kim DH, et al. Cryptogenic stroke and high-risk patent foramen Ovale: the DEFENSE-PFO trial. J Am Coll Cardiol. 2018;71(20):2335–42.

    Article  PubMed  Google Scholar 

  59. Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366(11):991–9.

    Article  CAS  PubMed  Google Scholar 

  60. Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368(12):1092–100.

    Article  CAS  PubMed  Google Scholar 

  61. Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, et al. Long-term outcomes of patent foramen Ovale closure or medical therapy after stroke. N Engl J Med. 2017;377(11):1022–32.

    Article  PubMed  Google Scholar 

  62. Mir H, Siemieniuk RAC, Ge LC, Foroutan F, Fralick M, Syed T, et al. Patent foramen ovale closure, antiplatelet therapy or anticoagulation in patients with patent foramen ovale and cryptogenic stroke: a systematic review and network meta-analysis incorporating complementary external evidence. BMJ Open. 2018;8(7):e023761.

    Article  PubMed  PubMed Central  Google Scholar 

  63. European Carotid Surgery Trialists' Collaborative Group. MRC European Carotid Surgery trial: interim results for symptomatic patients with severe (70-99%) or with mild (0-29%) carotid stenosis. Lancet. 1991;337(8752):1235–43.

    Article  Google Scholar 

  64. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365(11):993–1003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Amarenco P, Davis S, Jones EF, Cohen AA, Heiss WD, Kaste M, et al. Clopidogrel plus aspirin versus warfarin in patients with stroke and aortic arch plaques. Stroke. 2014;45(5):1248–57.

    Article  PubMed  CAS  Google Scholar 

  66. Yaghi S, Song C, Gray WA, Furie KL, Elkind MS, Kamel H. Left atrial appendage function and stroke risk. Stroke. 2015;46(12):3554–9.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yaghi S, Chang AD, Hung P, Mac Grory B, Collins S, Gupta A, et al. Left atrial appendage morphology and embolic stroke of undetermined source: a cross-sectional multicenter pilot study. J Stroke Cerebrovasc Dis. 2018;27(6):1497–501.

    Article  PubMed  Google Scholar 

  68. Kim SJ, Nogueira RG, Haussen DC. Current understanding and gaps in research of carotid webs in ischemic strokes: a review. JAMA Neurol. 2018.

Download references

Funding

This research was supported by the American Heart Association award #17MCPRP33670965.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Yaghi MD.

Ethics declarations

Conflict of Interest

Brian Mac Grory, Shane Flood, Eirini Apostolidou, and Shadi Yaghi each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cerebrovascular Disease and Stroke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mac Grory, B., Flood, S., Apostolidou, E. et al. Cryptogenic Stroke: Diagnostic Workup and Management. Curr Treat Options Cardio Med 21, 77 (2019). https://doi.org/10.1007/s11936-019-0786-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0786-4

Keywords

Navigation