Skip to main content
Log in

Transcatheter Mitral Valve Planning and the Neo-LVOT: Utilization of Virtual Simulation Models and 3D Printing

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Transcatheter mitral valve replacement (TMVR) is an emerging alternative for patients with severe mitral valve regurgitation who are considered at high risk for conventional surgical options. The early clinical experience with TMVR has shown that pre-procedural planning with computed tomography (CT) is needed to mitigate the risk of potentially lethal procedural complications such as left ventricular outflow tract (LVOT) obstruction. The goal of this review is to provide an overview of key concepts relating to TMVR pre-procedural planning, with particular emphasis on imaging-based methods for predicting TMVR-related LVOT obstruction.

Recent findings

Risk of LVOT obstruction can be assessed with CT-based pre-procedural planning by using virtual device simulations to estimate the residual ‘neo-LVOT’ cross-sectional area which remains after device implantation. A neo-LVOT area of less than 2 cm2 is currently thought to increase the risk of obstruction; however, additional studies are needed to further validate this cutoff value. Three-dimensional printing and personalized computational simulations are also emerging as valuable tools which may offer insights not readily confered by conventional two-dimensional image analysis. The simulated neo-LVOT should be routinely assessed on pre-procedural CT when evaluating anatomical suitability for TMVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Blanke P, Naoum C, Webb J, Dvir D, Hahn RT, Grayburn P, et al. Multimodality imaging in the context of transcatheter mitral valve replacement establishing consensus among modalities and disciplines. JACC Cardiovasc Imaging. 2015;8(10):1192–208. https://doi.org/10.1016/j.jcmg.2015.08.004.

    Article  Google Scholar 

  2. Sorajja P, Gössl M, Bae R, Tindell L, Lesser JR, Askew J, et al. Severe mitral annular calcification: first experience with transcatheter therapy using a dedicated mitral prosthesis. JACC Cardiovasc Interv. 2017;10(11):1178–9. https://doi.org/10.1016/j.jcin.2017.03.026.

    Article  PubMed  Google Scholar 

  3. Cheung A, Denti P, Kiaii B, Bagur R, Webb J, Latib A, et al. Mitral valve-in-ring implantation with a dedicated transcatheter mitral valve replacement system. JACC Cardiovasc Interv. 2017;10(19):2012–4. https://doi.org/10.1016/j.jcin.2017.08.019.

    Article  PubMed  Google Scholar 

  4. Regueiro A, Granada JF, Dagenais F, Rodés-Cabau J. Transcatheter mitral valve replacement: insights from early clinical experience and future challenges. J Am Coll Cardiol. 2017;69(17):2175–92. https://doi.org/10.1016/j.jacc.2017.02.045.

    Article  Google Scholar 

  5. Alkhouli M, Alqahtani F, Aljohani S. Transcatheter mitral valve replacement: an evolution of a revolution. J Thorac Dis. 2017;9(Suppl 7):S668–72. https://doi.org/10.21037/jtd.2017.05.60.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Muller DWM, Farivar RS, Jansz P, Bae R, Walters D, Clarke A, et al. Transcatheter mitral valve replacement for patients with symptomatic mitral regurgitation: a global feasibility trial. J Am Coll Cardiol. 2017;69(4):381–91. https://doi.org/10.1016/j.jacc.2016.10.068.

    Article  Google Scholar 

  7. Bapat V, Rajagopal V, Meduri C, Farivar RS, Walton A, Duffy SJ, et al. Early experience with new Transcatheter mitral valve replacement. J Am Coll Cardiol. 2018;71(1):12–21. https://doi.org/10.1016/j.jacc.2017.10.061.

    Article  Google Scholar 

  8. Descoutures F, Himbert D, Maisano F, Casselman F, de Weger A, Bodea O, et al. Transcatheter valve-in-ring implantation after failure of surgical mitral repair. Eur J Cardio-thoracic Surg. 2013;44(1):e8–e15. https://doi.org/10.1093/ejcts/ezt155.

    Article  Google Scholar 

  9. Ye J, Cheung A, Yamashita M, Wood D, Peng D, Gao M, et al. Transcatheter aortic and mitral valve-in-valve implantation for failed surgical bioprosthetic valves an 8-year single-center experience. JACC Cardiovasc Interv. 2015;8(13):1735–44. https://doi.org/10.1016/j.jcin.2015.08.012.

    Article  PubMed  Google Scholar 

  10. • Guerrero M, Urena M, Himbert D, Wang DD, Eleid M, Kodali S, et al. 1-year outcomes of Transcatheter mitral valve replacement in patients with severe mitral annular calcification. J Am Coll Cardiol. 2018;71(17):1841–53. https://doi.org/10.1016/j.jacc.2018.02.054 Guererro and colleagues report the 1-year outcomes of their early clinical experience with transcatheter valve implantation in patients with severe mitral annular calcification. The primary predictor of mortality at 30 days and 1-year was the occurrence of left ventricular outflow tract obstruction, highlighting the need to avoid this complication intra-procedurally.

    Article  PubMed  Google Scholar 

  11. Alsidawi S, Eleid MF, Rihal CS, Nkomo VT, Pislaru S. Significant LVOT obstruction after mitral valve in ring procedure. Eur Heart J Cardiovasc Imaging. 2015;16(12):1389. https://doi.org/10.1093/ehjci/jev235.

    Article  PubMed  Google Scholar 

  12. Paradis JM, Del Trigo M, Puri R, Rodés-Cabau J. Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J Am Coll Cardiol. 2015;66(18):2019–37. https://doi.org/10.1016/j.jacc.2015.09.015.

    Article  PubMed  Google Scholar 

  13. •• Blanke P, Naoum C, Dvir D, Bapat V, Ong K, Muller D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the neo-LVOT. JACC Cardiovasc Imaging. 2017;10(4):482–5. https://doi.org/10.1016/j.jcmg.2016.01.005 Blanke and colleagues introduce the concept of simulating the neo-left ventricular outflow tract (neo-LVOT) using baseline computed tomography in combination with post-processing techniques. The neo-LVOT cross-sectional area can be measured to identify patients who may be at increased risk of outflow tract obstruction after transcatheter mitral valve replacement.

    Article  PubMed  Google Scholar 

  14. Levine RA, Cape EG, Yoganathan AP. Pressure recovery distal to stenoses: expanding clinical applications of engineering principles. J Am Coll Cardiol. 1993;21(4):1026–8. https://doi.org/10.1016/0735-1097(93)90363-6.

    Article  CAS  PubMed  Google Scholar 

  15. Guerrero M, Wang DD, Himbert D, Urena M, Pursnani A, Kaddissi G, et al. Short-term results of alcohol septal ablation as a bail-out strategy to treat severe left ventricular outflow tract obstruction after transcatheter mitral valve replacement in patients with severe mitral annular calcification. Catheter Cardiovasc Interv. 2017;90(7):1220–6. https://doi.org/10.1002/ccd.26975.

    Article  PubMed  Google Scholar 

  16. Blanke P, Dvir D, Cheung A, Levine RA, Thompson C, Webb JG, et al. Mitral annular evaluation with CT in the context of transcatheter mitral valve replacement. JACC Cardiovasc Imaging. 2015;8(5):612–5. https://doi.org/10.1016/j.jcmg.2014.07.028.

    Article  PubMed  Google Scholar 

  17. Blanke P, Park JK, Grayburn P, Naoum C, Ong K, Kohli K, et al. Left ventricular access point determination for a coaxial approach to the mitral annular landing zone in transcatheter mitral valve replacement. J Cardiovasc Comput Tomogr. 2017;11(4):281–7. https://doi.org/10.1016/j.jcct.2017.04.002.

    Article  PubMed  Google Scholar 

  18. Blanke P, Dvir D, Naoum C, Cheung A, Ye J, Thériault-Lauzier P, et al. Prediction of fluoroscopic angulation and coronary sinus location by CT in the context of transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2015;9(3):183–92. https://doi.org/10.1016/j.jcct.2015.02.007.

    Article  PubMed  Google Scholar 

  19. Walmsley R. Anatomy of left ventricular outflow tract. Heart. 1979;41(3):263–7. https://doi.org/10.1136/hrt.41.3.263.

    Article  CAS  Google Scholar 

  20. Blanke P, Russe M, Leipsic J, Reinöhl J, Ebersberger U, Suranyi P, et al. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2012;5(9):984–94. https://doi.org/10.1016/j.jcin.2012.05.014.

    Article  PubMed  Google Scholar 

  21. Wang DD, Eng MH, Greenbaum AB, Myers E, Forbes M, Karabon P, et al. Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR). Catheter Cardiovasc Interv. 2017;92:379–87. https://doi.org/10.1002/ccd.27447.

    Article  PubMed  Google Scholar 

  22. Blanke P, Dvir D, Cheung A, Ye J, Levine RA, Precious B, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr. 2014;8(6):459–67. https://doi.org/10.1016/j.jcct.2014.09.009.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levine RA, Triulzi MO, Harrigan P, Weyman AE. The relationship of mitral annular shape to the diagnosis of mitral valve prolapse. Circulation. 1987;75(4):756–67. https://doi.org/10.1161/01.CIR.75.4.756.

    Article  CAS  PubMed  Google Scholar 

  24. Lefebvre XP, Yoganathan AP, Levine RA. Insights from in-vitro flow visualization into the mechanism of systolic anterior motion of the mitral valve in hypertrophic cardiomyopathy under steady flow conditions. J Biomech Eng. 1992;114(3):406–13. https://doi.org/10.1115/1.2891402.

    Article  CAS  PubMed  Google Scholar 

  25. Levine RA, Jimoh A, Cape EG, McMillan S, Yoganathan AP, Weyman AE. Pressure recovery distal to a stenosis: potential cause of gradient “verestimation” by Doppler echocardiography. J Am Coll Cardiol. 1989;13(3):706–15. https://doi.org/10.1016/0735-1097(89)90615-3.

    Article  CAS  PubMed  Google Scholar 

  26. Cape EG, Simons D, Jimoh A, Weyman AE, Yoganathan AP, Levine RA. Chordal geometry determines the shape and extent of systolic anterior mitral motion: in vitro studies. J Am Coll Cardiol. 1989;13(6):1438–48. https://doi.org/10.1016/0735-1097(89)90326-4.

    Article  CAS  PubMed  Google Scholar 

  27. Levine RA, Vlahakes GJ, Lefebvre X, Guerrero JL, Cape EG, Yoganathan AP, et al. Papillary muscle displacement causes systolic anterior motion of the mitral valve: experimental validation and insights into the mechanism of subaortic obstruction. Circulation. 1995;91(4):1189–95.

    Article  CAS  Google Scholar 

  28. Bapat V, Pirone F, Kapetanakis S, Rajani R, Niederer S. Factors influencing left ventricular outflow tract obstruction following a mitral valve-in-valve or valve-in-ring procedure, part 1. Catheter Cardiovasc Interv. 2015;86(4):747–60. https://doi.org/10.1002/ccd.25928.

    Article  Google Scholar 

  29. Wang DD, Eng M, Greenbaum A, Myers E, Forbes M, Pantelic M, et al. Predicting LVOT obstruction after TMVR. JACC Cardiovasc Imaging. 2016;9(11):1349–52. https://doi.org/10.1016/j.jcmg.2016.01.017.

    Article  PubMed  PubMed Central  Google Scholar 

  30. de Vecchi A, Niederer S, Karády J, Ntalas I, Maurovich-Horvat P, Rajani R. Computational fluid dynamic modelling to determine the hemodynamic effects of implanting a transcatheter mitral valve within the left ventricle. Int J Cardiovasc Imaging. 2017;34(5):803–5. https://doi.org/10.1007/s10554-017-1276-y.

    Article  PubMed  Google Scholar 

  31. Alharbi Y, Lovell NH, Otton J, Muller D, Al Abed A, Dokos S. Image-based fluid dynamics analysis of left ventricle outflow tract pressure gradient after deployment transcatheter mitral valve. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf. 2017;2017:4223–6. https://doi.org/10.1109/EMBC.2017.8037788.

    Article  Google Scholar 

  32. Karády J, Ntalas I, Prendergast B, Blauth C, Niederer S, Maurovich-Horvat P, et al. Transcatheter mitral valve replacement in mitral annulus calcification – “the art of computer simulation”. J Cardiovasc Comput Tomogr. 2018;12(2):153–7. https://doi.org/10.1016/j.jcct.2017.12.007.

    Article  PubMed  Google Scholar 

  33. El Sabbagh A, Eleid MF, Matsumoto JM, et al. Three-dimensional prototyping for procedural simulation of transcatheter mitral valve replacement in patients with mitral annular calcification. Catheter Cardiovasc Interv. 2018;(December 2017):1–13. https://doi.org/10.1002/ccd.27488.

  34. Vaquerizo B, Theriault-lauzier P, Piazza N. Percutaneous transcatheter mitral valve replacement: heart model and prototyping. Rev Española Cardiol (English Ed). 2015;68:1165–73. https://doi.org/10.1016/j.rec.2015.08.005.

    Article  Google Scholar 

  35. Kohli K, Wei ZA, Sadri V, Easley T, Pierce E, Oshinski J, et al. TCT-19 Predicting TMVR-related LVOT obstruction: concept of fluid mechanics modeling. J Am Coll Cardiol. 2018;72:B8–9. https://doi.org/10.1016/j.jacc.2018.08.1097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Blanke MD.

Ethics declarations

Conflict of Interest

Zhenglun Alan Wei, Ajit P. Yoganathan, and John N. Oshinski each declare no potential conflicts of interest.

Keshav Kohli is a consultant to Abbott Laboratories.

Jonathon Leipsic is a consultant to Heartflow and Circle Cardiovascular Imaging.

Philipp Blanke is a consultant to Edwards Lifesciences, Tendyne, Neovasc, and Circle Cardiovascular Imaging.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, K., Wei, Z.A., Yoganathan, A.P. et al. Transcatheter Mitral Valve Planning and the Neo-LVOT: Utilization of Virtual Simulation Models and 3D Printing. Curr Treat Options Cardio Med 20, 99 (2018). https://doi.org/10.1007/s11936-018-0694-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-018-0694-z

Keywords

Navigation